University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
2004

VISION-BASED URBAN NAVIGATION
PROCEDURES FOR VERBALLY
INSTRUCTED ROBOTS

KYRIACOU, THEOCHARIS

http://hdl.handle.net/10026.1/2778

http://dx.doi.org/10.24382/3721
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

List of Figures

Figure 1-1: (a) Miniature model town and (b) robot used in the IBL project.ccoccovrrurnrnnnn. 27
Figure 1-2: Processing modules of the IBL system. ... 29
Figure 3-1: The components of the IBL SYStem.c.ccvrivinrniiinncne s 53
Figure 3-2: The miniature town model......coc.ooieiiiiniiiininen s e 55

Figure 3-3: (a) The robot used in the IBL project (80x80x160mm) and (b) The robot-football

robot (BOXBOKBOMUM). ..o s s b 56
Figure 3-4: The hardware components of the r0bot. ..o 57
Figure 3-5: Example of the robot’s VIEW. c......oociii i s 59

Figure 3-6: Open loop speed control of each of the robot’s motors. Where /,and I, are the left

and right inputs to the motors i volts and 5, and s, are the left and right wheel speeds

EESPECHVELY oottt ettt bbb e b et e 61
Figure 3-7: Closed loop speed control system with a PI controller for each motor.cvuee... 64
Figure 3-8: The complete robot speed control system.........cooviirmicionniiinsnc e, 65

Figure 3-9: Screenshot taken during the development of the primitive procedures. The top-left
window shows the “video server’s” interface. The video server is an application, which
condnuously captures the image “seen” by the robot’s camera and saves that into a file
when requested by another application. The remaining image windows (apart from the
command line window at the bortom) are “image monitor” applications, each used to
monitor the changes of an image file during execution time.cococvveerercieeiineieissnrenee 70

Figure 4-1: A top view of the miniature town model indicating the starting point E (common

to both routes) and destinations P and H referred to in Table 4-1......c..ccviiiinn. 77

14

Figure 4-2: Number of distinct words discovered in the corpus as the number of instruction
samples increases. The long line is for all groups considered. The shorter lines are for
groups A, B and C taken in isolaton. Curves are obtained by averaging 50 random sets
comprising an increasing number of sample route descOopHONS.o.covvveinnieriieniciieinnen. 79

Figure 4-3: The description in Table 4-5(a) illustrated on the map of the miniature town. The
dotted red line shows the route that the user implies to the robot and the solid red line is
the route he/she explicitly descrbes.......oooovecriiiiic s 86

Figure 4-4: Number of distinct primitive procedures discovered in the corpus as the number
of instruction samples increases. The long line 1s for all groups considered. The shorter
lines are for groups A, B and C taken in isolagon. Curves are obtained by averaging 50
random sets comprising an increasing number of sample INStructons.cocoveevvreriernnnns 88

Figure 5-1: (2} Flowchart of “rotate” primitive procedure and (b) flowchart of all other
primitive procedures extracted form the Corpus.....oo i 105

Figure 5-2: Pomitive procedures can be accessed by users via natural language whereas low-
level procedures CanNOL. ..o s 108

Figure 5-3: Illustration showing how the prediction funcdon in primitive procedures is used.
Row (a) shows a case were the state of the robot after executing procedure P1 is
consistent with the next procedure to be executed P2. Row (b) shows the case where
there is an inconsistency between the state the robot is left in after executing P1 and the

expected state for the next procedure to be executed. For a more detailed explanation of

the figure see text BeloW. ..o s 110
Figure 5-4: Procedural knowledge representation. ... 115
Figure 6-1: An example of a raw (unprocessed) robot camera image..........cc.ccooveeererineereiieirennnns 118
Figure 6-2: (a) Raw camera image and (b) the same image after optical calibration................ 121

15

Figure 6-3: IHustrauon showing how inverse perspective transformation is performed on the
robot’s camera image. {a) Shows an example of an optically calibrated camera image, (b)
shows the result when inverse perspective mapping 1s applied to (a). Note the missing
information due to the sampling effect in (b). In (c) the missing information is
interpolated using neighbouring pixels containing informaton. (d) is the part of (c) used
by the primitive procedures for further processing.........ocoeveeieieiiiiiincrnncncinc s 123

Figure 6-4: Diagram showing the correspondence of pixels on the image plane with pixels on
the ground (or road sutface) plane. ... 125

Figure 6-5: Template (d) of Table 6-1 is used to represent a range of possible right turnings at
different angles to the main r0ad. ... 131

Figure 6-6: Hlustration of one position of the template image on the road surface map while
searching for the best matching posion. ..o e 133

Figure 6-7: Illustration showing how the matching of the template is performed on the road
surface map in order to save computational time. This starts with coarse scanning (a) of
the pivot point (of the template) in the map (1 in every 4 pixels shown in grey colour).
For the second step an area S, (shown magnified in (b)) is selected for a finer scan (1
pixel in 2) around the position that produced the best matching quality in the first scan.
Each side of §, is equal to twice the scan step in (a). In the same way scan area S, 1s
selected from (b). All pixels of §, are scanned in order to give the best possible matching
POSIIOTL covaevrssras e eas s b st eb s e 224884454 b s s R8s bn e RS bR 136

Figure 6-8: The best matching position of the left turn template on the road surface map.
Note how the pivot point of the template indicates the next waypoint of the robot.137

Figure 6-9: Users u9 and u24 were asked to explain a route starting from the Hospital (H).

Thetr first instructon referred to the t-juncgon the robot would meet. ...coovrciciiinn 138

16

Figure 6-10: Ilustration showing the “dead angles” of the rObOL. w.oooovvervvcvvevrecrroerririsrecnrecereeee 141
Figure 6-11: Vector diagram showing the robot’s actual displacement vector “4”, which 1s the

€ 23
4

vector sum of the robot’s intended displacement “¢” and the odometric etror “7”. 142
Figure 6-12: Seres of figures showing how the “short-lived” map is appended with new visual
information and how, as a consequence, this localizes the robot. For an explanation of
how this 15 done see teXt BElOW. .c...c.ciiiiiiii it en s 144
Figure 6-13: Illustradon of one position of the top view image on the map while searching for
the best MAatching POSIHON. ..o 146
Figure 6-14: (a) An example of 2 top view image and (b) its corresponding road filtered
version. White pixels denote road areas and black pixels denote non-road areas. 148
Figure 6-15: Improvements in order to improve illuminaton constancy in the miniature model
EOWIL: 11 svsetseecere st asese st m et sbe b b ab 442244 s s £ E RSt st a2 e e b n s e ae e anesea s en et 150
Figure 6-16: Senes of images illustrating how the road surface colour is bootstrapped. Fora
detailed explanation of how this is done see text below. ... 153
Figure 6-17: The high-low-high intensity profile kemel (magnified by a factor of 10) that is

convolved with the top view image to discriminate the road edge lines.coovereiennne. 154

Figure 6-18: (a) An example of a top view image and (b) its corresponding road edge image.

Figure 6-19: Examples of non road-layout objects mentioned in the corpus: (a) signed
building, (b) unsigned building, (c) the bridge, (d) trees.cocovvivrrriciriieccen, 157

Figure 6-20: Examples of placing a coloured marker in front of objects to be able to locate
FREITL. ettt e bbb bbb s 158

Figure 6-21: (a) An example of a camera image, (b) the corresponding top view image and (c)

the top view image filtered for the colour of the marker of the landmark sought. 159
17

Figure 6-22: Illustration showing the location that the robot must reach to execute the
instruction: “follow the road to Safeway” in comparison with the actual location of the
“Safeway” Butlding. ..o e 160

Figure 6-23: [llustration showing how the road waypoint representing a reference to a
landmark 1s fOUNA. ..o e e et 161

Figure 6-24: (2) Camera view and (b) the corresponding top view before the “university” when
the robot follows the instrucdon: “before reaching the university’s main door take the
road to your right”. Notice that when the “university’s door” is visible, the “road to the
nght” is still within the robot’s VIEW. ... 165

Figure 7-1: The diagram shows the occurrence of errors at different stages between the
speaker giving route descrptions and the execution of these descriptions by (a) a human
listener and (b) the robot. K, K, and K, represent the knowledge of the human
speakers, the human listeners and the robot’s respectively. The diagram shows the crucial
difference between cases (a) and (b): the ability of humans to do repair during the

executon of the route instructions. This accounts for the higher success rates of humans.

Figure 8-1: A case when the user says “turn left” when he/she actually means “take the first

exit Off the TOUNAADOULo ettt e e et e e e et eee e e ree e e e es et einasresssases 194

18

List of Tables

Table 4-1: Examples of “short” and “long” route descriptions. ... 76
Table 4-2: Most frequent and least frequent user word in the corpus. The least frequent words
were found only once in 96 route descriptons.ocveeveceiinice s 78
Table 4-3: Prmittve procedures extracted from the collected corpus of route descriptions....83
Table 4-4: Examples of primitive procedures extracted from the corpus and their
corresponding prmitive procedure calls. ... 84
Table 4-5: An example of a translation of a route description to its corresponding primitive
calls. Row (a) shows the transcnbed version of the route description u7_GC_CX. User 7
explains the route from Boots (C) to the Post-office (X) (see Figure 4-3). Row (b) shows

the corresponding manual translation of the descnption to its pnmitive procedure calls.

Table 4-6: Parameter types and possible values they can take in primitive procedure calls...... 89
Table 5-1: Examples of low-level procedures. ..o e 108
Table 5-2: Pseudo-code of the prediction function in primitive procedure modules.113
Table 6-1: The templates used for the template matching method. Light grey colour indicates
road-like areas and r..he black colour represents non-road areas. The templates shown are
used to find: (a) straight road, (b) end of road, (c) left and (d) nght turnings, (e)
crossroad, (f) left and (g) right bends, (h) tjunction, (i) roundabout entry, (j) clockwise
and (k) ant-clockwise curved road in roundabout, (}) left and (m) right roundabout exits,
(n) left and (o) right 90-degree tUIMS.covveiiee e 130
Table 6-2: Pivot point (dot-centred circle) and direction vector (arrow) for some of the

LEMPIATES. oot e s s 132
19

Table 6-3: Words in the corpus that indicate a relation between the robot and a landmark
along with an explanation of the robot’s final location with respect to the landmark’s
JOCAHON. 1.ttt e s b a b e bbb st s 164

Table 7-1: Route description success results during the development and evaluation of the
primitive procedures. Note that the percentage values indicate the proportions of the
executed route descriptions and not the total route descriptions.......cc...ooveveiesiernnnne, 172

Table 7-2: Roure description success results for the evaluation set when executed by the robot
and by the human subjects. ..., 173

Table 7-3: Analysis of the 26 cases where the robot fails to reach its destination in the
evaluation phase and comparison with the performance of human subjects in the same
FOULES. «.eviiratotatimets e striab b s vaeeraae bt sh s £hb b an s e b e LR b e R b e S b oAb Sb e s e bbb a e b e e ae b renes 174

Table 7-4: Route descriptions and illustrations of the two cases where the robot fails to
complete a route description in the evaluation set because of new primitive procedure
calls. Note that the solid red line mndicates the road descnibed by the user in each case and
the dashed red line indicates a route implied by the user. ... 175

Table 7-5: Route descriptions and illustrations of the two cases where the robot fails to

complete a route descripdon in the evaluagon set because of primutive procedure faihres.

Table 7-6: Route descriptions and illustrations of two (out of five) cases where the robot fails
to complete a route description in the evaluation set because of ambiguities in the user’s
AESCLPHOML. 1uoviiviiiiies et et bbb st b bbb e b e b bbb bbb 178

Table 7-7: Route descnptions and illustrations of two (out of seventeen) cases where the robot
fails to complete a route description in the evaluation set because of mistakes in the

USEL’S dESCHPLION. w..vrurrieritiiiiis i ettetrees b b st a e b e sa et et 180

20

Table 7-8: Pamitve call success results during the development and evaluation of the
prmitve procedures. Note that the percentage values indicate the proportions of the
executed primitive calls and not the total primitive calls. ..o, 181

Table 7-9: The robot fails to “see” the Boots (C) marker, at the en‘d of the route, because

when it turns the marker falls outside its field Of VIEW. oooeereee oo aen 182

21

Acknowledgements

First of all, I would like to thank my supervisor Dr. Guido Bugmann for giving me the
opportunity to work on such an ambitious and challenging project. Mostly I would like to
thank him for his continuous support and guidance throughout the duraton of my work. The

valuable things I learned from him will accompany me throughout my professional life.

There are no words to express my gratitude towards my parents Kyriacos and Despo to whom
I attribute only the best of who I am and will ever become. They taught me to respect and
appreciate myself and always have been by my side to support and guide me. I feel honoured

and privileged to be their son.
I would like to dedicate this thesis to my beloved wife and best fnend Mana. Her continuous

love and care made this work possible. Also thus thesis is dedicated to the little one growing

within her who, without knowing it, made possible for me to see the end of this work.

22

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award.

This study was supported by the Engineering and Physical Sciences Research Council

(EPSRC).

A programme of advanced study was undertaken, including one postgraduate course in

Computational Modelling.

Relevant scientfic seminars and conferences were regularly attended at which work was often
presented; external insdtutions were visited for consultabon purposes and several papers were

prepared for publicauon.

Publications:

e [Launa S, Bugmann G., Kyriacou T., Bos ., Klein E., Personal Robot Training via
Natural-Language Instructions, IEEE Intelligent Systems, 16:3, 2001, pp. 38-45.

¢ Bugmann, G, Laura, S., Kyracou, T., Klein, E., Bos, |., Coventry, K., Using Verbal
Instructions for Route Learning: Instruction Analysis, Proceedings of TIMR 2001
(Towards Intelligent Mobile Robots), Manchester, 2001. Technical Report Senes,
Department of Computer Science, Manchester University, ISSN 1361-6161. Report

number UMC-01-4-1.
23

Laumna, S., Bugmann, G., Kynacou, T., Klein, E., Instruction Based Learning: how
to instruct a personal robot to find HAL, Proceedings of the 9th European
Workshop on Learning Robots, EWLR-9, Prague, Czech Republic, September 2001,
pp- 15-24.

Lauria, S., Bugmann, G., Kynacou, T., Bos, J., Klein, E., Converting Natural
Language Route Instructions into Robot Executable Procedures, Proceedings of
the 2002 IEEE International Workshop on Robot and Human Interactive
Communicaton I(ROMAN ’02), Berlin, Germany, 2002, pp. 223-228.

Launa, S., Bugmann, G., Kynacou, T., Klein, E., Mobile Robot Programming
Using Natural Language, Robotics and Autonomous Systems, 38 (3-4), 2002, pp.
171-181 (ISSN 0921-8890).

Kynacou, T., Bugmann, G, Launa, S., Vision-Based Urban Navigation
Procedures for Verbally Instructed Robots, Proceedings of the 2002 IEEE/RS]
International Conference m Intelligent Robots and Systems (IROS 2002) EPFL,

Lausanne, Swirzerland, October 2002, pp. 1326-1331.

Robinson, P., Bugmann, G., Kyriacou, T., Culverhouse, P., Norman, M., MIROSOT:
A teaching and learning tool, Proceedings of the 2002 FIRA Robot World
Congress, edited by Korea Robot Soccer Association, 2002, pp. 309-314 (ISBN: 89-
86522-47-0-93560).

Kyriacou, T., Bugmann, G., Lauria, S., Vision-Based Urban Navigation
Procedures for Verbally Instructed Robots, Proceedings of TIMR 2003 (Towards

Intelligent Mobile Robots), Bastol, 2003.

24

Chapter 1

1 Introduction

The work presented in this thesis is part of an EPSRC funded project’ in Instruction Based
Learning (IBL) for mobile robots. The first section of this chapter gives a short introduction
“of the IBL project in order to set the scene for the work presented here. Section 0 descrbes
the main aim of this thesis followed by section 1.2, which explains the main challenges
presented 1n achieving the aim. Section 1.3 presents the methodology followed in order to
achieve the aim of the thesis and gives a baef summary of the original contributions to
knowledge made by this work. Section 1.4 specifies how the author of this thesis contributed
to the Instruction Based Learning group project. Finally, section 1.5 gives an overview of the

work presented in this thests.

1.1 Instruction based learning for mobile robots

The idea behind the IBL project 1s that future robots will need to adapt to the special needs of
their users and to their environment. It is likely that programming by natural language will be a
key method enabling computer language-naive users to instruct their robots. The project

attempts to investigate the issues involved in building a robotic system able to learn from

! Grants GR/M90023 and GR/M90160.
26

Robot: “Yes”

User: “Go to Boots.”

Robot: “How do I go there?”

User: “Take the third turning to the left...”
Robot: “Next mstruction please”

User: “...follow the road to the roundabout...”
Robot: “Next instruction please”

User: “.. .take the third exit off the roundabout...”
Robot: “Next instruction please”

User: “...take the first right...”

Robot: “Next instruction please”

User: “.. .Boots will be on your left after the road bend.”

At this point the robot starts to navigate in the miniature town in order to reach

“Boots” following the route descriptions given by the user. The robot informs the

user when it reaches the destination by saying:

Robot: “OK| it's done”.

The architecture of the IBL system is comprised of several functional processing modules

shown in Figure 1-2,

28

which is described in [Launa et. al., 2002]. If the mapping from the semantic representation of
the user’s instructons to procedures in the knowledge pool of the system 1s successful, the
corresponding procedures that would cause the robot to do what the user asked are executed.
On the other hand, if a requested action does not exist in the knowledge pool, the robot
manager initiates a leaming process to learn it and then execute it. New procedures can only
be composed from previously learned ones in the knowledge pool. This implies that an inidal
set of “promitive” procedures must exist in the knowledge pool before the robot starts

learning for the very first ime.

The aim of this PhD thesis

The aim of this PhD wotk was to determine and implement the primitive procedures of the

robot used in the Instruction Based Learning project.

The pnmitive procedures reflect those actions that users expect that the robot knows how to
perform without any further explanation. As an example, consider the acton “mrn”, which is
one of the primitive procedures implemented in this project (see chapter 4). Users assume that
the robot knows how to turn. However, a quite complex and precise set of sub-acuons need
to be executed in order to achieve a turn (image processing, robot wheel speed and distance
control etc.). This thesis work was concerned with finding what actions users expect the robot
to know when it begins its “life” and also with determining the underlying program code that

would produce the desired (by the user) behaviour in each case.

30

1.2 Challenges

An important aspect of the Instruction Based Learning system is that it is designed using a
user-centred rather than a robot-centred approach. This means that it is able to cope with
unconstrained spoken language mnstructions as a human would. This design target presented
the challenge of creating a robotic systcm that can be used by humans without requiring prior
training. A robot-centred approach on the other hand would be to build a robot and then train
human users to use its special language in order to be able to communicate with it. This latter

approach would, of course, contradict the main idea of this project.

Primiuve procedures must, therefore, directly correspond to actons found in natural language.
To result in the robot performing the requested (by the user) action, no more information

should be required than that provided in natural language.

Natural language instrucdons are underspecified when it comes to them having to be executed
by a robot. For example consider the case when a user instructs the robot to “take the left
turning”. In this case there is no indication that the user means the “first” left murning. More
importantly, there is no information as to where the left turning is or how a “left turning”
looks like. These are vital bits of information, which are required by the robot in order to be
able to successfully execute the above instruction. It 1s therefore essential for the validity of
the Instruction Based Learning concept that it is possible to design primitive procedures that
can cope with this under-specification in natural language. This issue is crucial to the
development of the Instruction Based Leaming system and it is of central importance to the

development of the primitive procedures described in this thests.

31

1.3 Methodology and original contributions

To achieve the aim of this thesis, a corpus of human-to-human route instructons was initially
collected and later analysed 1n order to determine what “built-in” knowledge and ability
human speakers expect their listcners to posscss for following route instrucaons. This user-
centred approach used to determine the functional vocabulary of the robot constitutes the

main contaobuton of this thesis.

The corpus collected was transcribed and then analysed for its word and functional content. A
method was developed for wrnting priminve procedures that are robust in coping with the
under-specificadon problem of natural language route instructions. This method iavolves the
determination of missing information in route instructions either during the ime when the
robot 1s being instructed by the user or during the time when the robot 1s executing the route
instructions. To determine the missing information dunng mstruction-ttme the corpus route
instructions as well as the robot’s environment to which these referred to were studied in
order to determine what human instructors considered as “commonsense” and therefore
omitted in their instructions. This information was then used as default in the pomitve
procedures when it was not explicitly given by the instructors. During the execution of route
instructions the robot uses artificial vision in order to determine missing information such as
the location of road layout features mentoned in route instructions. The method of template
matching is used in order to detect the sought features by trying to match template images
(representing the sought features) to the robot’s view. The original contnbution of this thesis

with regard to this method lies in the fact that the design and use of the image templates was

32

purely influenced by the content of the collected corpus of route instructions. This was done

in order to follow the user-centred design methodology.

A method 1s proposed in order to evaluate the performance of the primitive procedures
created when they are executed as part of complete route descripdons. This was done by
inviung human subjects to dnve the robot following route descrapuons. The performance of
the human subjects was then qualitatively compared to that of the robot’s for each route
descripdon. The differences found allowed for important conclusions to be drawn and gave

mdications for the course of future wortk.

In order to reliably control the speed of the robot used mn this project an elaborate robot
speed control system is proposed in this thesis. This 1s based two PI (Proportional and
Integral) and one PID (Proportional, Integral and Differental) controllers in order to control

the speed of each wheel and the differendial speed of the robot.

1.4 The author’s contribution to the IBL project

The following is an outline of the work contrnbution of the author of this thesis to the

Instruction Based Learning project:

¢ Miniature town design and implementation (see section 3.2).
¢ Robot software and hardware integration. The existing robot hardware was integrated
with a video camera, video transmitter (see section 3.3.1) and electronic circuits to

enable easier battery charging while an external power supply was powenng the robot.

33

Likewise, existing robot software was greatly changed to swt the robot performance
requirements for this project. The most significant of these changes included the
design and implementation of a software controller in order to control the speed of
the robot in a reliable manner (see section 3.3.2).

Assistance in corpus collection. The author was involved 1n all aspects of the corpus
collection such as the preparation for each route description according to the corpus
collecton protocol, the briefing of subjects prior to the beginning of the experiments
and the recording of route descriptions. Also the author was involved in the corpus
collection of dialogues by taking the place of the robot in the dialogues and producing
the responses that the robot would.

Corpus lexical and functional analysis. The results of these analyses are presented in
sections 4.2 and 4.3. The functional analysis was fundamental to the determination of
the primitive procedures that needed to be implemented for the robot in this project.
Primitive procedure implementation. This is the main part of the work described in
this thesis.

Assistance in collecting data for testing of the IBL system. The author of this thesis
was involved in setting up the test environment for human subjects to drive the robot
following route descriptions given to them. Also assistance was offered during the
experiment in order to ensure adherence to the expennmental protocol.

Testing of the primitive procedures. This was done by evaluating the performance of
the primitive procedures developed in this project both on an individual basis and as

part of complete route instructions.

34

Apart from the above, it is also important to note that the author took part and contrbuted in
all aspects of the Instruction Based Learning project during all the meetngs and discussions

with the other membets of the project.

1.5 Thesis overview

This section gives a brief description of the contents of each chapter in this thesis.

Chapter 2 presents a review of previous work related to this thesis. It mainly summanses work

in the three areas related to this project. These are:

1. The analysis of natural language, in the specific context of route descriptions, in order
to determine the functional components of the task domain,
2. Methods for road layout recognition for navigation.

3. Robot localization and mapping.

Chapter 3 describes the experimental environment setup used in this project. The setup
includes the miniature model town, the robot and two PCs, which act as the “remote bram” of

the robot.

Chapter 4 explains how the corpus of natural language route instructions was collected and
later analysed. The results from the word and functional analysis are also presented. The
functional analysis revealed the primitive procedures that need to be created as part of the

robot’s “built-in” knowledge. The functional analysis also revealed the issues concemed with

35

implementing a natural language system. The work in this thesis focuses on one of these
1ssues. This is the “under-specification” of natural language. In this chapter three methods are

proposed to overcome this problem.

Chapter-5 explains how the program code in primitive procedures is organized and the
reasons behind this organizaton. The chapter mainly describes the need of a “prediction
funcdon” associated with each procedure in the knowledge base of the robot. This function 1s
used during the learning of new procedures in order to verify that the senes of route
instructions given by the user can be executed. The “prediction function” is used in order to
identfy errors either in the user’s route description or in the processing of the route

description by the system.

Chapter 6 describes how image template matching is used for determining the location of
landmarks mentoned in route descriptions. The same chapter explains how the robot creates

a small map of its immediate locality, called “short-lived” map. This map is used for two

puwrposces:

1. To be able to determine the odometric errors of the robot and
2. In order to be able to retain in memory visual informadon close to it, which go out of

its view as 1t navigates.

Chapter 7 describes how the primitive procedures developed in this project were evaluated.

36

Chapter 8 presents the orginal contributions of this work and gives suggestions for future

work on this project.

37

Chapter 2

2 Literature review

2.1 Natural language in robotics

Programming human helper tobots to perform even simplest of tasks is a time consuming and
complex process. This is impossible to achieve for computer language naive user. For such
helper robots to be useful, a method of communication must be used between humans and
robots that will not demand specia.l technical and programming abiliies from humans. This
observation is made, among many texts, in [Crangle and Suppes, 1994] where it is stated that
for efficient human-robot interaction the user should not have to become a programmer, or
rely on a programmer. Also the user should not need to learn specialized technical
vocabularies to request an action from a robot. In [Hausser, 2001] the difficulty of using a
computer language for most potential users is stressed. The three main reasons given are: (a)
users are not familiar with the operations of the machine, (b) the expressions of the
programming language are different from those of every day language and (c) the use of the
programming language requires great precision. This last point is also mentioned in [Huffman
and Laird, 1993], which says that computer language procedures must be specified in complete

detail and that no steps may be omitted or abstracted.

38

It is likely that natural language will be a key method for computer language naive users to
program their robots in the future. In [Herzog, 1995] it 1s stressed that natural language is a
natural communication medium for humans and so systems, which are able to communicate
in natural language meet human needs much better. In [Allen et. al., 1996] human subjects
preferred to use the speech interface when given the choice between that and a keyboard

interface in order to communicate with a natural language system.

In the last few years there have been numerous attempts to create robots that communicate
with humans using natural language. In [Fong et. al.,, 2001] a robotic system is presented,
which can engage into spoken dialogues with humans in order to request information that
would assist it during navigational tasks. The robot initiates a dialogue with a human only
when it is faced with a problem during navigadon. The robot can produce a limited amount of
messages (around 30) to its human user to which it expects simple answers such as
“yes”/“no” ot a numerical value. These messages are pre-defined by the creators of the robot
by studying the possible problems that the robot could face during its navigational task.
Furthermore, users are expected to have a certain amount of expertise regarding the robot and
the environment in order to collaborate usefully with the robot. Here, the robot’s navigational
task is already programmed by a robot expert and in effect, natural language dialogue 1s only
used to make a selection between 2 or more alternatives of an already written program code.
In [Spiliotopoulos et. al., 2001] a mobile robotic assistant for hospitals is desctibed. The robot
can be instructed (using natural language) to deliver a medicine or a message to a specific
room or patient. Its users can also request database information such as the phone or room
number of a patient. A simple state-based dialogue management technique is used. The robot

leads the dialogue by asking specific questions for the user to answer. In this way the system is
39

made robust to speech recognition errors and also fast in its responses because it only needs
to do simple language processing. However, the system restricts 1ts user to a specific dialogue

frame that can be uncomfortable for him.

In the robotic systems described above the dialogue structure is predefined. The robots lead
the dialogue and their users are expected to respond with specific information. Users are
constrained by a limited choice of answers. While these systems are robust because it 1s easier
to recognize the user’s utterances, they are limited as far as dialogue flexibility. In [Allen et. al.,
1996] it 1s said that it is a fundamental requirement for natural spoken dialogue systems that
the user should not be constrained in what can be said. Furthermore the above systems
cannot learn new tasks. This means that they would be unable to adapt to the needs of
individual users but rather, users have to understand how the robots work and how to use

them.

Systems that can learn new tasks are described, among other, in [Huffman and Laird, 1993],
[Asoh et. al., 2001], [Bischoff and Jain, 1999] and [Torrance, 1994]. In [Huffman and Laird,
1993] a virtual mobile robotic arm is mstructed (using interactive natural language dialogue) to
perform simple actions such as object displacement. The robotic agent can learn new actons
composed of a sequence of known actions or sequences. The user 1s restricted to using simple
imperative sentences such as: “Pick up the red block”, “Move to the yellow table”, “Move the
arm above the red block” etc. In [Asoh et. al,, 2001] an office robot is described. The robot
communicates in natural language but understands five tasks (or task frames): database query,
database update, person identficaton, navigation and person calling. Each task frame requires

several necessary patameters (slots to be filled in the task frame) before it can be execurted.

40

The dialogue manager of the system tries to identify these parameters from the uset’s
utterance. A siilar system is described in [Bischoff and Jain, 1999]. Here, the robot can
understand several actons that are stored in the robots memory as prototypes with a single
verb to describe the underlying action and several parameters (mandatory or not). An attempt
1s made to cover all possibilities of an actton mentioned in natural language by creating more
than one prototype for the action where each prototype has a different number and
configuration of parameters. The system chooses the right word elements from the user’s
utterance in order to satisfy a prototype and then execute its associated action. In [Torrance,
1994] an indoors mobile robot is described, which follows typewritten instrucdons in natural
language. The robot recognizes several types of instructions, some causing the robot to move
and others are changing or interrogating its state. Although not explicitly mentioned, it seems
that the system tries to match particular instructon templates on the user’s text input and then

uses the key words to modify its state vadables.

In the above cases the user is constrained in using a closed set of template natural language
instructions. These template instructions were designed with none or very little investiganon
of the structure of unconstrained natural language in the context used. Rather, a robot-centred
approach was used, 1.e. the template instructions were tailored according to the specifications
of the robotic system being used. As with computer language programming, this requirement

means that 2 user must be trained in order to be able to use the system.

An attempt for a user-centred approach was made in [Green and Sevennson-Eklundh, 2001]
where an indoor mobile robot, capable of natural language communication, is described.

“Wizard of Oz” experiments were conducted dunng the project in order to investigate the

41

behaviour of subjects when speaking to the robot. The “Wizard of Oz” technique 15 described
in [Dahlback et. al., 1993]. With this technique parts of an interactive system {that are not yet
developed) are substituted by humans who try to mimic the behaviour of the future system.
The purpose of this is to be able to study the responses of the users of the system. In [Green
and Severinson-Eklundh, 2001] these experiments were not used to examine the structure and
functional content of naturally spoken language. The tasks that the robot is able to perform
were decided and implemented before the Wizard of Oz experiments. The experiments were
used to determine the lexicon of the context, the states that the human-robot dialogue can
take (question, answer, repair etc.) and the type of feedback a user requires from the robot but
not what the user will need from such a robot and in what way he/she is likely to ask for it.
This is therefore another example of a robot-centred approach in order to determine the
functional vocabulary of the robot. Users of the robot would need to be trained on how to
command the robot using a restricted set of commands that are predetermined by the robot’s

creators.

In this thesis the functional vocabulary of the robot is determined using a user-centred
approach. To achieve this, a corpus of route instructions was collected from prospective users
of the robot. The corpus was then analysed in order to determine the nature of the

instructions users give to the robot in the route description context.

42

2.2 Segmentation of natural language into functional

components

Previous work on natural language analysis has shown that human free speech can be

segmented into “atomic” units for the purposes of simplifying the analysis of long utterances
and therefore enable the better understanding of their structure. For example in [Schleidt and
Kieg, 1997] 1t is found that human speech can be segmented into small speech units lasting a
few seconds each. Speech units are defined as the “meaningful blocks” or “semantic phrases”

where the meaning of a string of sounds is clear to an observer.

Based on the above findings, in order to determine the speech units in the route description
context, the corpus collected for this project was manually segmented using task related
crtena. Task onented segmentation looks into the action descabed by the speech segments. It
was expected that the speech module developed for the IBL (Instruction Based Learning)
system would eventually produce the same result using syntactic and prosodic cues. A
syntactic segmentation approach looks into the arrangement of words in order to establish
grammatcally sound sequences. A prosodic speech segmentation approach uses cues such as
voice pitch, intonation, loudness, rhythm and stress in order to determine the limits of speech

segments.

Previous examples of task related segmentation in the context of route descrptions are found
in {Denis, 1997] and [Fraczak, 1995]. In [Denis, 1997] a corpus of route descriptions was
analysed in order to investigate how humans externalise their understanding of space. For this,

1t was necessary to segment the route descriptions given by the subjects into small segments

43

called “chunks”. A chunk was defined as the speech unit that provides the smallest possible
piece of information. In [Fraczak, 1995] a text-to-image translator is described, which
translates route descriptions into sketches. A corpus of route descriptions was segmented into
sequences and connections. Sequences are speech units descnbing action or introducing a
landmark and connections are single words connecting two sequences. No indication of the
size of sequences is given but from the examples mentoned they seem to be the smallest

possible units of meaningful speech.

Following a similar approach as in the above mentioned work, in order to segment the
collected route descriptions in this project a single criterion was used to define a speech

segment: a speech segment is the smallest unit of speech that describes a single action.

However, speech segments cannot be directly associated with pnmitive procedures, 1.e. a
primitive procedure cannot be written to represent each speech unit found in the corpus. This
is because the actions described by speech units do not always specify a final state, which is

essential for the robot in order to execute the action. As an example consider the utterance:

“follow the road untl you reach the post-office”

Although “follow the road” describes one action, it cannot be executed by the robot becanse
it contains no information as far as when to stop following the road. Because of this, more
than one speech units need to be combined into “functional components”. As described in

section 4.3, in the example given above the whole utterance is considered as a functional

component in order to encompass the piece of informaton that gives the final state (i.e. to

reach the post-office).

2.3 Road layout recognition for navigation

All primitive procedures in a route description scenaro causc the robot to navigate on the
road or confirm its position in relation to other landmarks. Therefore, the robot must be able
to determine the road layout in order to navigate effectively and also be able to locate

landmarks relative to the road.

This section gives examples of past work done in order to recover the road layout from an
image observed by a camera onboard a moving vehicle. Methods use road surface features
and/or road edge features to discriminate the road from the image. [n [Waxman et. al., 1987]
the components of a system used for visual land vehicle navigation are described. In this
system the road is discriminated by its edges, which are approximated by pairs of parallel line
segments. The line segments are found using edge detection and then selecting those pairs of
lines that are parallel (in the real world) and which intersect at a vanishing pomt in the image.
In [DeMenthon and Davis, 1990] a method 1s presented for reconstructng a 3D road model
from a single image. As a first step, edge detection is performed on the image. The algorithm
tries to find points lying on the edges of the road making reasonable hypotheses on the shape
of the road, which add enough constrains to make the problem solvable. Such hypotheses are
for example that the road is of uniform width, the road does not tilt sideways (zero-bank
constraint) and that road edges are approximately parallel at opposite points. The aim is to

calculate a possible centreline path along the road for a moving vehicle. In [Kaske et. al., 1997)

45

a vision-based method is suggested for finding the road edges in country roads where the
edges are not very clear. This 1s done using stagstical information from the tmage such as
energy, homogeneity and contrasts that, when considered in combinanon, give distinctive
results at the edges of the road. The location of the road edges, found in previous images that
are taken as the robot moves are translated using the vehicle’s motion vector to find the
expected new positions. These are used with the results from the current image to eliminate
false positves. In [Sayd et. al., 1998] a method is descnbed to determine the location of a
vehicle on a non-marked road. In order to extract the road surface from the image seen by a
camera on the vehicle a small area in front of the vehicle (bottom of the image) is sampled.
Assurming that the sample falls on the road surface, pixels in the image are classified as road or
non-road pixels depending on how close their luminance is compared to the luminance of the
pixels in the sample area. The vehicle location is thcp calculated by finding the road sides from
the extracted road area assuming constant road width. In [Wilson and Dickson, 1999] an
algonthm is suggested for tracking the boundaries of the road. The road boundaries are
modelled as chains of line segments. The line segments are found incrementally starting from
the bottom of the image (road close to vehicle) and moving towards the top (road far from
the vehicle). The algorithm uses the endpoint of the previously found boundary segment
(pivot point) as the start of the next segment. The slope of the new segment is determined by
rotating a rectangular window with one of the smaller sides fastened at the pivot point and
counung the number of edge pixels it encloses at each angle step. The angle that gives the
maximum edge pixels is the slope of the next road boundary segment. The method suggested
fails when the road boundary becomes discontinuous. The algorithm may also fail if the road
surface where the initial search is done contains scars or other markings. In [Wang et. al,

20001 the Catmull-Rom spline algorithm 1s used to create curve models of the road edges. The
46

fitness of the models is then tested on the real image seen by the vehicle. The control poiats
(of each road edge) used for the spline algorithm are selected from the edge-filtered image by
first assuming that the road plane is flat and the road is of uniform width. A pair of points is
taken to lie on opposite sides of the road if the tangents to the line segments they belong to,
meet at the same point (vanishing point) on the horizon. After the application of the spline
algorithm the two curve models (one for each side of the road) are superimposed on the edge-

filtered image to test their fitness.

All of the methods mentioned above deal with the case of a straight or curved road extending
in front of a vehicle. These methods are effective in cases where a vehicle needs to keep in the
middle of a road lane when following a highway for example. However, they are unsuitable in
more complex urban environments where the vehicle needs to turn at an intersection or a t-
junction, use a roundabout etc. Further, all methods require that both edges of the road are
visible in the image (though not necessanly continuous 1n all cases) to be able to recover the

road.

Methods to recognize intersections on the road were proposed in [Jochem at. al., 1996] and
{Crisman and Thorpe, 1993]. In [Jochem at. al., 19906] a neural network based vision system
used for vehicle navigation is described. The neural network is first trained with images of
straight road. During normal operation the image from the camera onboard the vehicle is used
to produce images that could have been seen by “virtual cameras” positoned at different
locations in front of the vehicle. The neural nerwork uses the “virrual images™ as input and
produces a confidence measure indicating the presence of a straight road segment in them. By

knowing the location of the virtual camera in relation to the actual camera, the system can

47

calculate the position of a straight road segment when the virtual camera image produces a

high confidence value. In order to model an intersection the system requires the knowledge of
either the position of the intersection (where the road branches meet), to determine its precise
layout, or the layout of the intersection (i.e. the angles of the branches), to find its position. In

the case of the IBL system, such a-prioti information is not available in route instructions.

In [Crisman and Thorpe, 1993] dynamic model-building and matching are applied on a road
surface likelihood image to derermine the layout of the road. The road surface likelihood
image is obtained by first clustering pixels of similar colour in the image (both on and off-
road) and then using Bayesian esutmaton to classify the pixels in each cluster as road or non-
road. The classification method uses information from the previous image analysis. The
intersectdon detection method effectively finds intersections spurring from a straight road but

would fail to find an intersection on a cutved road or an exit from a roundabout for example.

In the case of a robot following natural language route instructions, there is a need for a
method that will efficiently use the information provided in the route instructions in order to
successfully cause the robot to navigate on the road. Such a robot must have knowledge of the
geometry of the road layour features mendoned in route instructions, be able to find them and
also be able to use them as instructed. It 15 also important that the representation of road
layout features that the robot will have in its memory is generic enough to represent all
vanations of a road layout feature that are classified under the same name in route

instrucdons.

48

The well known method of image template matching is used in this thesis to locate landmarks
mentoned in route instructions. The road layout features mentioned in route descriptions are
represented by template images, which are generic enough to cover all variatons of the road
feature in the robot’s environment. The location of a road feature is found by matching the

associated template in the robot’s visual filed.

2.4 Localization and mapping

The robot in this project needs to retain in memory visual information close to its immediate
locality, which is “seen” by its camera but goes out of view as the robot follows the road. This
information is retained by creating a local map (called “short-lived” map) of the robot’s
environment on which previously seen and current visual data coexist. In order to merge
ptevious visual data with current a simplified method of image “mosaicing” s used. This
method 1s described, among many, in [Unniknshnan and Kelly, 2002a). Image mosaicing for
mapping is a method that uses 2 series of images taken, for example by a moving robot, which
overlap such that each image contains a portion of the scene in common with both the image
before and after it in the sequence. The aim is to create a map of the environment traversed by
the robot by successfully linking the sequence of images. The great challenge presented to this
task is loop closure in cyclic enjrixonments (see [Unnikrishnan and Kelly, 2002b] and
[Gutmann and Konolige, 1999]). Loop closure requires the successful link of the first and last
of a sequence of images taken when the robot’s trajectory closes a loop. This problem anses
because every time one image is linked to the next in the sequence a matching error is
introduced due to image noise. This error increases with the number of images in the

sequence and therefore with the distance travelled by the robot.

49

[n this project, a “short-lived” map is created as the robot moves. The map is called “short-
lived” because it only displays visual informadon in the last 2 images (previous and current)
captured by the robot. Previously recorded visual informaton is lost when it fails out of the
boundaries of the map as the robot moves. The main reason for this 1s that the robot in this
project does not need to build a complete map of its environment in order to use it for future
navigaton. As mentioned earlier in section 1.1, only the procedure corresponding to the route
descripton followed by the robot is saved in memory and can be called later to achieve the
same navigational task. Here, therefore, the error due to image hinking is present only once in

the “short-lived” map and it is small enough to be safely neglected.

2.5 Discussion

The main observaton from studying previous work on of natural language instructed robots is
that previous attempts to create such robots are limited in the sense that their users are
constrained to a pre-determined functional vocabulary. This functional vocabulary is decided
by the creators of the robots without considening how the potential robot users would mstruct
the robot naturally. Thus, users are limited to a constrained form of natural language, which
they must learn in order to instruct the robots. This approach of determining the functional

vocabulary of the robot is called “robot-centred” approach.

In this project a purely “user-centred” approach is followed to determine the tasks that the
robot is able to perform in the selected context. The idea 1s that the user should not require to

learn how to use the robot and thus be restricted to using the robot’s functional vocabulary,

50

bur he/she should be able to communicate with the robot in the same manner as with a

human.

51

Chapter 3

3 Experimental environment setup and

robot design

3.1 The compohents of the Instruction Based Learning

system

For the purposes of the project an expenimental environment was build that takes the space of
a small room. The setup compmses mainly of a miniature town model, the robot and two host

computers (Figure 3-1), which act as the “remote brain” for the robot.

52

world. Nevertheless the corpus collected was enough to enable the development of a

methodology to determine the robot’s primitive procedures using the user-centred approach.

The contmbution of the author of this thesis to the expenimental environment setup of the

IBL project included the following:

1. The design and creatton of the miniature model town environment.
2. The integraton of a video camera and video transmitter on an existing robot-football
robot in order to be used in this project.

3. The modification of the existing robot code in order to achieve better robot control.

In the following sections of this chapter each of the above contributions is descnibed in detail.

3.2 The miniature town model

The layout of the miniature town model was designed using CorelDraw graphic design

software. The model is flat and its dimensions are 170cm x 120cm (Figure 3-2).

54

A circuit board on which a microcontroller’ is a central processing unit controls all the
functions on the robot. The main components on this circuit board apart from the
microcontroller are a dual full-bridge driver®, which powers the two motors, and an 869 MHz

. . 5
radio receiver’, which receives navigation commands for the robot.

The robot is powered by eight Ni-MH (Nickel-Metal Hydride) rechargeable batteries of
700mAh (energy capacity) each. They are connected in series in order to create a cell of 9.6

Volts and 700mAh energy capacity.

Added to the robot-football robort, in order to use it in the IBL project, are a CCD colour TV
camera’ (628 x 582 pixels) and a 2.4 GHz video transmitter’. A host computer acquires the
images captured by the CCID camera onboard the robot through a wireless video link and via a

TV capture card. An example of such image is shown in Figure 3-5.

3 Atmel AT90S8515

+1.298

5 Radiometnx RX3

6 Model MINI-C20A purchased at Allthings Sales and Services (http://www.allthings.com.au).

7 Model 'TX-MOD?3 purchased at Allthings Sales and Services (htip:/ /www.allthings.com.au).
58

each wheel is constant during the manoeuvre. Examples of such manoeuvres are motions on

straight lines and arcs and on-the-spot rotations.

The robot program is interrupt driven. There are 4 types of interrupts that can occur:

1. Left wheel optical encoder sensor interrupt.
2. Right wheel optical encoder sensor intetrupt.
3. UART (Universal Asynchronous Receiver/Transmitter) interrupt.

4. Interrupts from the two wheel speed controllers.

Whenever either of the two optical sensor interrupts occurs the variable that contains the
distance covered by the corresponding wheel 1s incremented. Both variables are set to 0 when
a new command is received by the robot. This 1s done because every command instructs the
robot to perform a new manoeuvre starting from a position relative to the one it 1s when it
receives the command. The robot does not record odometric information for more than one

manoeuvie.

The UART interrupt occurs when a byte is received through the radio link. The interrupt
service routine stores the byte in a string and checks if the string’s length is equal to the
expected command length. If not enough information is received to complete a command, the
service routine does nothing, otherwise the received string is processed to extract speed and
distance information for the two wheels. It then sets the approptiate microcontroller registers

to cause the requested speed and resets the left and nght distance vanables to 0.

60

It must be noted here that the robot does not incorporate a radio transmitter in order to send
data to the host computer. This means that there is no way for the robot to signal the end of
an execution of 2 motion command to the host computer. To overcome this imitation, the
host computer calculates the execution time of every command sent to the robot thus
predicting when the robot will have finished executing it and will be ready to receive the
following command. The execution time of a robot command can be calculated from the

speed and distance values sent to the robot.

3.3.2.1 The PID controller used for robot speed control

The control diagram in Figure 3-6 shows how the speed of each wheel of the robot is

controlled in some robot football robots.

5

, ———» Left Motor »| Gearbox [—— Left Wheal
s, .

i, ——| Right Motor Gearbox [— Right Wheel

Figure 3-6: Open loop speed control of each of the robot’s mototrs. Where fyand [ate the
left and right inputs to the motors in volts and s;and s, are the left and right wheel speeds

respectively.

Thus 1s an open loop control scheme for each individual wheel speed. A value corresponding
to each motor voltage input 1s sent to the robot and it is applied to the respective motor unal

the requested distance 1s covered by the wheel attached to that motor through the gearbox.

61

There are two problems with the above method of control:

1. Factors such as the state of the robot’s battery and frictional forces will affect the
speed of each motor at a constant voltage mput. This means that the speed of each
motor depends on external factors apart from the level of input voltage.

2. Even if the two motors used for the robot are of the same model and manufacturer,
small differences between them such as the resistance of their armature windings will
result in a speed difference between the two motors when they are subjected to the

same input voltage.

The effects of both problems above are minimal when the motors are drven at their rated
voltage. At this input the robot is capable of accelerating up to speeds of 1.5 metres per
second but this is not desirable because of heavy wheel slipping that gives false readings of
distance covered by the robot. Furthermore, the duraton of slipping of each wheel may be
different depending on its grip with the ground. This often causes the robot to manoeuvre in
the wrong direction. In robot football the motors are driven at their rated voltage. Any errors
produced due to speed differences between the two wheels and slipping are quickly corrected

because the robot is sent navigaton commands several times per second.

For the purposes of the IBL project the robot is required to run at speeds not more than
10cm per second in order to avoid slipping. This low speed requirement means that the
motors of the robot must be powered with less than 10% of their rated voltage. At this low

input the load-speed charactenstic of the motors is not linear and this causes unreliable

62

transient behaviour. For a successful manoeuvre of the robot, both wheels must complete
their assigned distances but also they must maintain their assigned speeds reliably throughout
the manoeuvre. This 1s not possible with the control system shown in Figure 3-6 at such low

power input to each motor.

A popular solution, in order to overcome the problems of open loop systems such as the one
shown in Figure 3-6, is to use a PID (Proportonal, Integral and Differential) controller
algorithm. The algorithm takes as input an error ¢, which 1s the difference between the desired
output value and the actual output value of a system and produces the input to the system.
The objective of the controller is to match the output of the system with the desired output.

The PID algorithm is composed of three terms:

1. A term that is proportional to the error e.
2. A term that is proportional to the integral (or the sum of the previous values) of the
error.

3. A term that is proportional to the rate of change of the error.

Each of the three terms plays a different role in the controller. For example the differential
term (number 3 above) suppresses sudden departures of the output from its desired value. It
1s not necessary to have all three terms present in the controller. A controller can only have
the proportional and integral terms for example in which case it is called PI controller. For a
detailed explanation of the PID controller as well as implementation guidelines for real-time

systems see [Bennet, 1994].

63

Two PI controllers are used to accurately control the speed of each wheel of the robot
eliminating errors due to the robot’s battery charge level and friction. The error inputs to each
controller (¢, and ¢) are the differences between the requested (or desired) speeds (s, and s,)
and the actual speeds (5;and s,) of the left and right wheels respectively. The outputs of the
controllers (I;and I) are the corresponding voltage inputs to the left and right motors. Figure

3-7 shows the closed loop speed control diagram of each motor.

5
=] A ' Left Wheel
S Pl Left Motor Gearbox —»
+
S
e, I Right Wheel
Sy s Pl Right Motor Gearbox |——»

Figute 3-7: Closed loop speed control system with a PI controller for each motor.

The input to each motor is calculated by its corresponding PI controller whenever a wheel
speed controller interrupt occurs. Notice that the speed of each wheel at the tme of the
interrupt is required for the calculation and not the distance covered by the wheel, which is
physically measured at the motor shaft of the wheel (see section 3.3.1). The speed of each
wheel 1s determined by dividing the distance travelled since the last interrupt by the interrupt’s
interval time. The interval of this interrupt is ime critical and therefore one of the

microcontroller’s timers s used to produce it.

64

For every robot manoeuvre there is a difference between the left and rght wheel speed. This
difference is 0 when the robot is following a straight line and grater or less than 0 when the
robot is performing a curve. It is crucial that this difference is maintained throughout the
manoeuvre if the robot is to reach it target location successfully. To guarantee this, a PID
controller is added to the system shown in Figure 3-7. The complete speed controller of the

robot is shown in Figure 3-8.

Left Wheel

€ + l
S Pl —>®—b Left Motor @ Gearbox |—p
+

AS, Egs A8,
PID —® Opp
y Y + _ _
+ e, <+ I3 Right Wheel
Sir Pl Right Motor Gearbox [—»
— Sr

Figure 3-8: The complete robot speed control system.

As Figure 3-8 shows, the error input (¢,) to the PID controller is the difference between the

requested speed difference A5, and the actual speed difference 4S5, between the two wheels.
65

The output of the PID controller contributes to the PI outputs to produce the motor inputs
(/,and [) in such a way so as to maintain the requested speed difference throughout the

robot’s manoeuvre.

To determine the parameters of the PI and PID controllers of the system, first the sampling
nterval T, of the wheel speed controllers interrupt was selected. There are two points to

consider when selecting a discrete-ume controller’s sampling interval:

1. It should not be too small. This is because digital computations have finite resolution
limited to the length of the digital system’s floating point number. As the sampling
interval decreases, the change in the result of the controller’s output between
successive samples becomes less than the resolution of the system and thus
information is lost (see [Leigh, 1992]).

2. It should not be too big because loss of information will occur due to the sampling
effect (see [Bennet, 1994]). Nyquist’s sampling theorem states that the sampling
interval should at least be twice as fast as the highest frequency of the fastest changing
signal in the PID controller’s calculation. However, in practice a much higher sampling

rate (more than 10 times the maximum frequency) is used.

Following the empirical rules suggested in [Bennet, 1994} the sampling interval for all three
controllers was chosen to be 0.065536 seconds. This period is a multiple of the
microcontroller’s clock period and it is chosen among several possible preset perniods given by

the microcontroller’s manufacturer.

66

The following set of equations show how the inputs to the left and right motors are calculated

each time a wheel-speed controller interrupt occurs:

= K,,[e.(n)Jr

% kn e:(k)Ts:| + Omo
er(k pﬂs} — Ok

n

L= K,,[e,(n)+

-

k=1

(1)

n

Owo = Kp’[ed,(n)+ %Zecu(k I, + T.;'(e"'(n)— ea(n - I)le

i k=| TS

es = AS. — AS.

where T, is the sampling interval of the control system is seconds. The varables ¢,(#) and ¢,(n)
represent the values of left and right speed errots respectively at some ume interval #T, where
n1s an integer. The vanable ¢,(z) is the error in the differential speed at the same time interval.
Constants K, and T, are the proportional and integral constants of the PI controllers and K,’,
T,’and T, are the proportional, integral and differential constants of the PID controller. All

speed values are in wheel-speed-encoder pulses per second.

Note that the input ranges from 0 to 255 and corresponds to a voltage range from 0 to V,

Volts where IV, is the robot’s battery terminal voltage.

The PI and PID controller constants were found experimentally using a procedure similar to
the one suggested in [Braunl, 2003]. This procedure, adapted for the control system presented
in Figure 3-8, 1s as follows:

67

1. The desired operating speed of the robot was selected to be 10 cm/éec.

2. To determine the PI controller parameters only one of the two wheels was operated.
The integral control of the PI controller of the wheel and the PID controller were
turned off. K, was increased unal oscillation in the speed of the wheel occurred.

3. K, was divided by 2.

4. T, was decreased from a large number unal oscillation occurred.

5. T,was multiplied by 2.

6. Both wheels were set to operate with PI control and the parameters denved thus far.
7. K,’was increased untl oscillation in the differential speed of the wheels occurred, 1.e.
the robot oscillating between the left and right directions while moving forward.

8. K,’was divided by 2.

9. K, was increased while observing the behaviour of the differental speed while
changing the operating speed by approximately 5%. A value of K,”was chosen to give
a damped response.

10. T, was decreased from a large number until oscillation occurred.

11. T,’ was multplied by 2.

The following values were obtained with the above procedure and by doing minor

adjustments to achieve optimum petformance:

K,=0.15
T,= 0.6

K,’= 0.05
68

T'=0.6

T,=0.5

3.4 Programming platforms and developed software

The Linux® operating system was used to develop the primitive procedures. The primitive
procedures are written in the Python’ programming language augmented by vision routines
wiitten in C. Python 1s an interpreted language that is well suited for this project since it is
desired to create new program code from verbal instructions. Python generates programs in
the form of scripts that can be executed immediately without an intermediate compilation

step-

Although the Python Imaging Library (PIL) could be used to implement all image processing
routines described in this thesis, it is very slow and for this reason all vision routines were
watten in C and compiled in order to be used as python functions. Details of how to extend

the Python language with C language functons can be found in {Chun, 2001].

Primitive procedures cannot pass information between each other directly. This is because
they are independent programs called in sequences. It is only when one primitive procedure
finishes execution that another can be started. For this reason all data (including image files) 1s
passed between the procedures by saving 1t to files. This does not slow the system because any

data saved 1s quickly accessed while it is sdll in the PC’s cache memory and so no time is lost

8 “Redhar” varant, Version 7.3
? Python for Linux, Version 1.5.2 (http://www.python.org)
69

A video of a test-run, which shows how the development interface is run, is included in the

CD accompanying this thesis (see Appendix C).

3.5 Summary/Contributions

The main contribution of the work presented in this chapter is the development of a complex
software control system that 1s used to control and coordinate the wheel speeds of the robot
1n this project. The control system, comprising of two PI controllers to control each wheel’s
speed and a PID controller to control the differential speed, presented a particular challenge in
this project because of the extremely unreliable behaviour of the motors drving each wheel
when these were run at a small fraction of their rated voltage. The control system
implemented provided an alternative to using expeﬁsive high-specificanon motors
incorporating gearboxes in order to produce the same speed reliability and odometnc accuracy

required for the purposes of this project.

Similar (compared to the one presented in this chapter) control systems for differential-dave
of non-holonomic robots are presented in [Jones et. al., 1999] and more recently in [Braual,
2003]. In their work a proportional (P) controller was used to control the speed of each
individual wheel and integral (I) controller was used to coordinate the differennal speed of the

two wheels.

Also in this chapter a method was descnbed for monitonng the execution of pdmitive

procedures without the need to incorporate extra code in them in order to achieve this

71

purpose. This 1s done by “tapping” into (or monitoring) the data exchanged between the
prnimitive procedures while they are executed. An interesting feature of this method is that by
switching off all the data monitoring applications, the execution-speed performance of the

primitive procedures can be quickly established.

72

Chapter 4

4 Corpus based system design

As discussed in section 2.1, previous attempts to implement a natural language mterface to
robots mainly used a robot-centred approach for determining the functional lexicon of the
robot. The functional lexicon of the robot was created by predicting what a user in the context -
would to ask the robot and in what way. Users, therefore, had to be constrained to a certain
extend when speaking, taking care to conform to the robot’s particular syntax and to include

all the necessary patameters of the action they requested.

In this project, an effort was made not to constrain the user so that any user not previously
trained to speak to the robot would be able to do so. In order to follow such a user-centred
approach it was necessary to investigate how users speak when giving route instructions, what
information they provide and what they omit as commonsense. The robot should be able to
use the information given in the route descriptions and determine the information omutted 1n
them, without discomforting its user with questions if it is to qualify as a useful human

assistant.

To determine the funcdonal vocabulary of the route description context, a corpus of route

descriptions was collected from 24 subjects. Details of the corpus collection procedure are

73

given In section 4.1. The collected route descriptions were recorded and later transcribed for
analysis. The corpus was analysed for its word and functional content. The method and results

of these analyses are presented in sections 4.2 and 4.3.

The cotpus of route descrdptions collected in this project was split in two sets in order to
enable development and later the evaluation of the pnmitive procedures (see chapter 7). For
completeness, sections 4.2 and 4.3 present the results of the word and functional analyses of

the complete corpus.

Section 4.6 explains the vanous cases in the corpus where natural language route instructions
are missing information that 1s vital for the robot in order to execute the requested task. The

methods proposed in this thesis for determining the missing information are also described.

The collected corpus of route mstructions contributed in different ways to the main parts of
the Instruction Based Learning system. Sections 4.7.1 and 4.7.2 explain how it contributed to
the development of the natural language system design (dialogue manager) and the robot

system design (robot manager) respectively.

4.1 Corpus collection procedure

To collect linguistic and functdonal data specific to route learning, 24 subjects were recorded as
they gave route instructions to the robot in the miniature town environment. Subjects were
divided into 3 groups of 8. The first two groups (A and B) were told that the robot was

remote-controlled and that, at a later date, a human opetator would use their instructions to

74

drve the robot to its destination. Subjects were told this so that they would speak as naturally
as they would if they instructed a human. It was also specified that the human robot-operator
would be located in another room, seeing only the image from the wireless on-board video
camera. This was specified to induce the subjects into using spatal references accessible by the
vision software. Subjects were also told to use previously defined routes whenever possible,
instead of re-explaining them in detail. Each subject had 6 routes to describe among which 3
were “short” and 3 were “long”. Each long route included a short route. This was done to
reveal the type of expressions used by the subjects in order to link taught procedures with
primitve ones. Groups A and B received the same routes to describe, but with the sequence
of “short” and “long” route inverted. This would reveal the difference between a fully detailed
route, and a route with reference to a short route inserted. Again the question is one of how
procedure insertion is handled by subjects (see Table 4-1 for examples of short and long route

descriptions).

The first two groups (A and B) used totally unconstrained speech, to provide a performance
baseline. It is assumed that a robot that can understand these instructions as well as a human
operator would represent the ideal standard. Each subject described 6 routes having the same
starting point and six different destnations. Starting points were changed after every two

subjects. A total of 96 route descriptions were collected from these two groups.

A third group of 8 subjects (group C) had the same routes to descnbe as group A, but were
forced into a simplified dialogue with an operator to produce shorter chunks of descriptions.
It is known that it 1s very difficult for NL processing tools to correctly segment an

uninterrupted stream of words into sentences. Therefore, corpus group C was thought to be

75

determine what type of new word might be expected, each route instrucdon was compared to
the corpus of all other instructions. The result is that the new words are all among the 96 least

frequently used words listed in Table 4-2.

The dialogue group (group C) tended to use less distinct words as shown in Figure 4-2.
Therefore, future experiments may reveal an improved speech recognition performance in

dialogue conditions.

New words (i.e. words spoken by the user, which are unknown to the speech recognition
system) may present a problem in that they will be either recognised wrongly or not
recognised at all and thus present the danger of changing the meaning of what the user said.

There are three possible scenarios when a user utters a new word:

1. The word is a key word in the specification of the route description. In this case the
robot will fail without being able to detect the problem.

2. The word is not a key word. In this case its presence does not zlter the specification of
the route description and the robot never “sees” its effect in the route description.

3. The word is misrecognised in such a way so that the meaning of the instruction
appears wrong to the speech system. In this case the speech system can initiate a repair
dialogue with the user in order to clanfy what has been said or to bias the user to

explain in a different way.

Starting such a repair dialogue with the user can be a very complex process. At present a

simple dialogue is initiated with the user when the recognition confidence of the speech

80

system falls below a certain limit. This dialogue usually involves the system replying either
with: “Repeat that please.”, in which case the user must repeat the instruction, or with “Did

you mean ...”, in which case the user can only answer “yes” or “no”.

4.3 The primitive procedures in route instructions

In order to find the priminve procedures the robot should have in its memory when it starts
its life, the corpus of route instructions collected was first segmented into its “functional
components”. These functonal components were then represented by pomitve procedures

written 1n computer language code.
The methodology followed to segment the route descriptions into their funcdonal
components was based on the definition of the functional component. Two rules were

followed:

1. Functional components should descnbe a single action and

2. They must have a defined initial and final state.
The first rule makes sure that the most elementary actions that constitute a route description
are considered to be its functional components. The second rule comes from implementation

constramnts. In the example utterance:

“follow the road untl you reach the post-office”

81

Although “follow the road” can be considered as one action there is no information in it to
suggest when to stop following the road. In this case the whole example utterance is
considered as a functonal component in order to encompass the piece of information that

gives the final state (L.e. reaching the post-office).

Section 4.3.1 describes how the functonal components extracted from the corpus are
represented by robot procedures called “primitive procedures”. Primitive procedures are
computer language procedures that control the robot. A primitive is called for every functional
component found in the route description and this causes the robot to execute the action(s)
specified by the functional component. Primitive procedures accept key words from the

functional components as parameters.

4.3.1 The primitive procedures extracted from the corpus and

their representation

Functional components found in the corpus are organized into groups describing similar
actions. For example the primitive procedures: “take the first left turn” and “take the second
left turn” have little difference in their implementation in robot executable code. Similarly with
“follow the road to the post-office” and “follow the road to the library”. To avoid duplication
of code, parameterised primitive procedures were written to represent groups of functional
components found in the corpus rather than the individual components themselves. Different
combinations of parameters are initialised in each pramitive procedure call to represent each

functional primitive found in the corpus.

82

the evaluation of the system. The complete final transladon of each route in the corpus can be

found on the CD accompanying this thesis (see Appendix C).

As with the task vocabulary, to determine 1if the corpus collection had led to a complete
sampling of the primitive tasks in our route description context, the average number of
prmitve procedures was plotted as a function of the number of collected route descriptions.
Figure 4-4 shows that the number of distinct procedures is increasing with the number of
sampled route descriptions. In the beginning there is a steep rate of increase of new primitive
procedures but as more route instructions are considered this rate decreases. It can be
speculated, by looking at the curve representing all the corpus descriptions in Figure 4-4, that
the functional vocabulary of the robot is not completely determined by the collected corpus.
The slope of the curve at 144 route descriptions seems to suggest that on average one new
procedure is likely to be discovered in every approximately 40 route descriptions. A similar
observation was made in section 4.2 with the rate of increase of new words for the robot (see
Figure 4-2). There, it was discovered that on average one new word would be discovered for
each route description. The issue of new primitive procedures appearing during the lifetime of
the robot is very crucial to the design of instruction based robots. This issue is discﬁssed

further in the concluston of this thests (see section 8.2).

87

4.4 The “go” primitive

The “go” primitive is called when users refer to complete previously learned routes. Examples

are:

“go to the post office” (ul2_GA_EG)
“go to the roundabout” (u2_GC_MC)
“go to the roundabout mentioned previously” (u13_GA_CE)

“go to boots” (u19_GB_EC)

When the system learns a new route, it saves all the procedures of the new route in a scxpt file
called “go_<point A>__<point B>.py” where point A is the name of the starting landmark
and point B 1s the name of the destination landmark. When the system encounters an
instruction such as “go to the post office” in the beginning of a route description, say, from
the library to the museum, it first searches the knowledge base to find a file called
“go_library__post_office.py”. If the file is found, information from it is used in the new file
being created (“go_library__museum.py”). How and which pieces of informaton from
previous knowledge is extracted and used is described later in sections 5.3 and 5.4. If, in the
example given, “go_library__post_office.py” is not found in the knowledge base then a new

learning process is started to create it and then use it.

4.5 The “go_until” primitive

The primitive “go_until” refers to a previously learned route but only up to a certain point in
P g p Y y up P

that route. It 1s used either because the user tnteats to divert the robot onto another route or

90

because the destination is simply along the previous route but before that route’s destination.

Examples in the corpus were such reference is made are:

“okay you Il need to pass the train station again as you did going to the post office and

you ll see the university as you go onto the roundabout” (u4_GC_EW)

“erm head as though you re going towards the post office so you go over the bridge

but instead of carrying straight on take a right” (u6_GC_CM)

“okay from the crossroads continue on straight ahead take the next rght”

u7_GC_CM)

“okay head towards the grand hotel bur just before you get there the safeway is on

your right hand side” (u10_GA_MD)

“recalling our previous destination was the grand hotel and we passed safeways en

route just before derrys” (u23_GB_HD)

“nght if you go exactly the same way towards the queens pub as before erm as you go
over the bridge as you go past the t junction the post office will be there on your

night” (u6_GC_CX)

This 1s a more complicated case than the “go” primitive because now the previously learned

route must be partly used up to a landmark specified by the uset. To add to the problem, this
7N

landmark is not always apparent from the instructions in the previously learned file (e.g. “from
the crossroads...”). This is either because when the file was created, information about the
landmark was not inserted by the system, because it was not deemed relevant to the route, ot

because the landmark was not mentioned by the user at all.

Two methods for solving this problem were discussed during this project but were not

implemented due to ime constraints. These are presented as part of future work in Chapter 8.

4.6 The under-specification of natural language and how
it affects the functional specification of the primitive

procedutes

Spoken route instructions can be very abstract often lacking information that is assumed by
the instructor as commonsense. However, the missing information can _sometimes be vital to
the success of the robot in executing a route description. In most cases the human listener
automatically infers the missing information. Alternatvely he/she can engage in a dialogue
with the speaker in order to request a more explicit version of the instruction. For the
[nstruction Based Learning system, starting such a clanfication dialogue with the user can be 2

very COI‘I]P]CX process.

It 1s important therefore, for the system, to try to infer, to the extent possible, any implicit
information in the user’s instructions. Since the system is lacking the cognitive power and

experience of the human listener the only way to determine how to resclve such cases, is to

92

study the corpus of route instructions collected during this project for those cases where users

omit the same information and expect the same action from the robot.

This section shows how the under-specification of natural language route instructions
influenced the functional implementation of the primitive procedures. The sub-sections below
present the three cases where missing information in route instructions, that would otherwise

cause the robot to fail, is inferred by the system.

4.6.1 The use of default parameter values

Some parameters of pnmitive procedures can take default values when a call to these
procedures does not initialize these parameters. An example of such an occurrence is when a
user says: “take a left” actually meaning “take the first left turn”. The action to “take” is first
mapped here to the “turn” primitive by the robot manager (see [Lauria et. al., 2002]) and then
the parameters “relation_1" and “object_1" are initialised to “left_of” and “self” to reflect the
information of direction passed from the user. However, the specifications of the “turn”
primitive procedure require at least the “ordinal_1” parameter to be initialised too. This
parameter is given a default value “first” because in all cases of the corpus when the
instruction was used without specifying the ordinal of the turning, the first turning was
implied. The default values of parameters used in the primitive procedures are listed in each

primitive’s specification in Appendix A.

93

4.6.2 The reference to the destination landmark

When humans describe a route they continuously refer to landmarks. It has been observed by
studying the collected corpus of route instructions that they always refer to the desunation
when that is reached in the descripton. This reference can be explicit or implicit. Examples of

explicit references to the destination are:

“safeways 1s the next building on your nght hand side” (u1_GA_MD)
“and on the right hand side opposite the lake 1s'the car park” (uS_GC_EP)

“and the museum will be on your dght” (u13_GA_CM)

However, references to the destination have no particular difference when compared with

references to other landmarks. Some examples are:

“you got pc world on your nght” (u20_GB_EC)

“you ve got a car park on your nght” (u20_GB_EG)

“walk up few metres and then you see the huge tall building on your left”
(u22_GB_CL)

“there is a lake on the left hand side” (ul_GA_MY)

The robot’s actions are different when the destination is mentioned than when any other
landmark is mentioned and therefore a different section of code should be executed for each
case. In the first attempts to functionally analyse the corpus in order to determine the

primitive procedures, two distnct primitive procedures called “destinadon” and “location”

94

where allocated to each case. “destinaion” was to be called when the landmark reference
utterance mentioned the destination and “location” was expected to be called when the
utterance mentioned any other landmark specific to the route description. This posed a
problem to the robot manager’s design because, as can be seen from the examples above,
there is no indication, from the landmark reference or the utterance structure, of whether
these refer to the destnation or any other landmark. The only way to solve this problem was
for the robot manager keep in memory the destination landmark throughout the route
description. Remember that in the beginning of a discourse between the user and the robot
the user asks the robot to “go to the <landmark>"" in which case the destination is always
explicit. This i1s when the robot manager stores the landmark’s name in memory. After that,
every time the user mentions a landmark, in his/her route description, this would be
compared with the destination landmark and if they are the same, the actions for destination
specification are called, otherwise the actions for location specificadon are called for
execution. It was decided that this choice would be made at the primitive procedure level and
eventually only one primitive procedure called “location” was used for this purpose (see Table
4-3). This procedure has one parameter called “destination_1” that is always initialized with
the name of the destination landmark stored in the robot manager’s state. Every time the
“location” primitive 1s called the “location_1" parameter, which indicates the landmark
mentioned in the user’s utterance, is compared with the “destination_1" parameter and

depending on the result the approprate course of action is taken.

A further complication to this problem is that sometimes the final destination reference is not
always explicit, L.e. the name of the destination is not mentioned. Examples of such references

are:

95

“take the first left and continue round and you should see it” (u7_GC_CD)

“take the first right and it should be on your left” (u8_GC_HL)

At the present moment the dialogue manager cannot always resolve that “1t” tefers to the
destination landmark that was mentioned early in the dialogue. When the system fails to
atudbute the reference to the destination it passes an unresolved reference etror to the robot

manager. In these cases the system fails to recogmse that there is a mention to the destination.

4.6.3 The multiple meanings of “go”

A problem arises when the user says for example “go to the train station” when the train
station 1s ahead of the robot on the same road. In this case the user actually means “follow the
road to the train staton”. The robot manager, therefore, considers three possibilities when a

“go to <landmark>" utterance is spoken by the user:

1. The route to <landmark> was explained in a previous description and the
associated file exists in the knowledge base.

2. The route to <landmark> was not explained earlier by the user but the user
mistakenly assumes the robot knows how to get there. In this case a new learning
procedure must be started.

3. <landmark> is ahead along the road. The “follow_road” primitive should be used

instead of the “go” primitive.

96

To resolve the problem, the robot manager searches the knowledge base to find the previously
leamed route. The outcome distinguishes between possibility 1 (a previously learned route is
found) and possibilives 2 and 3 (a previously leamed route is not found). If a previously
learned route is not found the proper course of acion would be to start a clanfication
dialogue with the user to resolve the issue (whether the user meant 2 or 3 above). At the
present moment engaging in a dialogue with the user to resolve such issues is part of future
work and therefore it is not implemented. Rather, in such a case, the robot manager selects the

most probable interpretation between cases 2 and 3 above.

4.7 The concept of corpus based designed system

4.7.1 Contribution of the corpus to the natural language system

design

The collected corpus of route instructions contributed in two ways to the development of the

dialogue manager:

1. It determined the lexicon of the selected context and
2. It provided the syntax that humans use when giving spoken route descriptions toa

robot.

The speech recognition system used in this project is speaker-independent, i.e. it can recognise
any human voice without it being trained with that voice. One of the major factors affecting
the success rate of speech recognition systems, which are speaker-independent, 1s the number

of different words they can recognize. As this number increases, the speech recognition error
97

rate increases exponentially. To be effective to an acceptable level of recognition, a speech
recognition system must have a lexicon of, at most, a few hundred words. To keep within the
bounds of this limitation the speech system must be able to dynamically change the size and
content of its lexicon based on the context or theme of the dialogue. In this project the
context is that of route descriptions and so the lexicon of the dialogue manager was
constrained only to those words found in such context. This set of words was directly denved

from the collected corpus (see section 4.2).

4.7.2 Contribution of the corpus to the robot system design

The collection of the route description corpus contributed in two ways to the development of

the robot manager component of the IBL system:

1. Itindicated the type and structure of the primitive procedures that would need to be
created for the robot and
2. Itindicated the objects that the robot should be able to recognise in the miniature

model town.

As mentioned eatrlier in this thesis, the primitive procedures are those procedures that the
robot will need to have in its knowledge base when it begins its “life”. These are the tasks that
a user, in the route description context, will not explain in detail. Take for example the
frequent occurrence of the instruction: “turn left”. The users did not explain in their route
instructions how to tum left but assumed that the human who would at some point drive the

robot knew how to do it. The program, therefore, which causes the robot to perform a left

98

turn, had to be created before the robot started learning new routes. The “turn” procedure is

one of the primitive procedures (see section 4.3).

Humans continuously use landmarks in their route descriptions. Often these landmarks are
used as essential parts of the route they are describing (“rturn left after the post-office”, “at the
crossroads take a nght”, “the hospital will be in front of you” etc). Sometimes landmarks are
also used as a reassurance that the robot 1s on the right track (“you will see a lake on your
left”, “you will pass by the hibrary”, “there will be some trees on your right” etc). The robot
needs to be able to identify these landmarks when following route instructions using vision as
its only sensing ability. Information as to how the crossroads or the library looks like, or how
to search the visual field for such landmarks is assumed to be known by the robot and thus
such ability should be pre-programmed into it. Also knowledge related to the nature of the
landmarks themselves should exist in the robot’s memory. For example the instruction: “pass
the crossroad” would require the robot to do something quite different from the similar

instruction: “pass the post-office”.

The landmarks found in the corpus included road layout features such as crossroads, turnings,
t-junctions, the roundabout exits, signed or unsigned buildings, the bridge, the roundabout,
the lake and trees. In this project only road layout features are identified by the robot. All
other landmarks mentoned by the users are identfied by placing a coloured stap next to them

on ground plane (see sections 6.2 and 6.3).

99

4.8 Summary/Contribution

This chapter explained how the corpus collected was analyzed in order to determine the
functional lexicon for the robot used in this project. The primitive procedures presented in
Table 4-3 were derived solely from the corpus thus ensuring a purely “user-centred” approach
to the design of the IBL system. It is unlikely for a roboticist to have intuitively determined
these primitive procedures without studying how humans give route instructions. This 1s
because, not only the primitive procedures would have to be determined, but also the different
ways humans call each primitive action through natural language. The primitive strucérure
should be made flexible enough to accommodate this. Consider fqr example the following

three utterances:

“at the roundabout, take the second exit”
“enter the roundabout in a clockwise direction and take the second left turn”

“turn left in the roundabout, take the second exat”

All three user utterances are accepted and will result in exactly the same actions by the robot
in the IBL system because users in the corpus have used utterances similar to these in order to
instruct the robot to use the roundabout. This diversity among users could only be revealed by
studying the cotpus collected in this project. In the primitive procedures the different narural
language forms of the same action are accommodated by the use of different procedure
patameter combinations and/ot values. The possible parameter combinations and values are

determined by studying the corpus.

100

It is possible, after the development of the system, that new (L.e. unseen in the corpus) forms
of primitive actions will appear in natural language instructions, which will not be covered by
the possible parameter combinations and values determined in the corpus. This problem is
similar to the one of altogether new primitve actions appearing after the completion of the

system, which 1s mentioned below.

The work described in this chapter revealed three problems that are important for the future

design of IBL robots. These are:

1. The probability of new primitive functions arising in route instructions after the
development of the system (see section 4.3.1).

2. The cases when users make partial use of previously learned procedu;es while
explaining new procedures (see section 4.5).

3. The under-specification of natural language (see section 4.6).

It has been shown in section 4.2 that the IBL system will be faced with new words after its
completion. This has been observed also in previous work on speech recognition systems
such as for example in [Zue, 1997]. In this thesis we also show that in the same way, new

primitive functons can appear after the completion of the system.

This chapter also explained how users refer to a part of a previously explained route while
explaining a new route. This reference is made implicitly by only mentioning a landmark at the

point where the robot is supposed to stop following the previously explained route.

101

Determining the landmark referred to is not always apparent from the instructions in the

previously learned procedure. This problem has never been documented previously.

Cases 1 and 2 above are discussed further in chapter 8.

This thesis focuses on the narural language under-specification problem. In this chapter three
methods were proposed in order to determine missing information in natural language route
instructons during the learning of new procedures (see Section 4.6). Secdon 6.2 explains how
the well known method of image template matching is used in order to determine missing

information during the execunion of route nstrucdons.

102

Chapter 5

5 The functional structure of the primitive

procedures

In this chapter the functional organization of the code in primitive procedures and the reasons
behind it are explained. Section 5.1 presents the generic flowchart followed by all pnmitive
procedures found in the corpus. In Section 5.2 the need for lower level procedures is
explained. These low-level procedures are called by the primitive procedures at the highest
level. In Secton 5.3 it is explained how the structure of the paomitive procedures enables
linking of a serles of procedures in order to form a new “learned” procedure. Finally Section
5.4 describes the use of a “prediction function”, which is created in all primitive and new
procedure files and it is used for verification and error detection in the user’s description
durnng the “learning” stage. The prediction funcdon predicts whether the primitive, when
called during the execution of the route description, will execute without any inconsistencies

due to wrong or missing parameters passed to it.

103

5.1 The structure of primitive procedures and how it

reflects the structure of spoken instructions

With the exception of one primitive extracted from the corpus, the structure of the priminve
procedures reflects the human cogmuve process when following a route instruction. This
process incorporates a “search-and-act” loop that exits when a terminating condition is met.
The terminating condition is always associated with finding a landmark (the target). As an
example consider the route instruction: “take the second turning to the left”. The target
landmark 1s the second left turning. The search-and-act loop involves searching for the
turning and moving along the road undl it 1s found. When the second left turning 1s found the
robot moves to where the roads meet and rotates left in order to face the new direction (target

associated actions).
The exception to the loop-structure described above is the primitive “rotate”. This pnmitive
was used only twice in the corpus (Table 4-3) and it simply causes the robot to rotate about

itself 180 degrees. Therefore its execution is represented by a single pre-defined acton.

Figure 5-1 shows the flowchart followed by all primitive procedures.

104

data to re-localize the robot in order to determine and account for the odometric error and
then searching for the target landmark in the field of view. If the target landmark is not found
the robot moves along the road for a short distance before re-starting the loop. If the sought
landmark 1s found, a set of target associated actions are performed and execution is then
passed to the next primitive procedure. A detailed description of each block of the flowchart

in Figure 5-1 is given in Chapter 6.

Primitve procedures can call other primitive procedures in the beginning of their body. At
first glance, this may be thought to conflict with the definitton “primitive” but this flexibility is
only allowed to reduce the complexity of the system. Take for example the case when a user
says: “after the library turn right” as part of a route descrption. This has to be considered as
one functional component of the route descrption according to the definiton of the
functional component given in section 4.3. However, to execute the above instruction two
primitive procedures are actually called that correspond to: “follow the road ;ml:i.l the library”
and “take the (first) nght turn”. The mapping to the two primitve procedures can be done in

two ways:
1. The robot manager can call the two primitive procedures individually. For example:

follow_road(relation_l=*after”, object_l="library”)

turn(relation_l="right_of”, object_l=*self”)

106

2. The robot manager can call the “turn” prmitive only with the necessary parameters so
that this primitive would then call the “follow_road” primitive from within itself. For

example:

turn(relation_l=*right_of”, object_l=“self”, relation 2=*after”,

object_2=*library”}

It was decided that it was easier to follow the second approach in such cases because it was
more difficult for the robot manager to determine from the Discourse Representaton
Structure (DRS) the implicit action to “follow the road untl the library” in the example given

above.

The Python program code of all primitive procedures is included on the CD accompanying

this thesis (see Appendix C).

5.2 The use of low-level procedures

It quickly became apparent during the implementation of the primitive procedures that these
required to call low-level procedures from within their body. These were called “low-level”
because they perform specific actions (more fundamental than that of the primitive
procedure) and each can be used by more than one poimitive procedure. These low-level
procedures are not accessible directly by the human user (Figure 5-2), 1.e. no functional speech

segment of the route insttucdons could be directly mapped to them.

107

5.3 The verification of new procedures during their

creation

As mentioned earlier, new procedures are learned by combining previously learned procedures
(mostly primitive procedures) from the knowledge base of the robot. When the user descrbes
a new procedure as a sequence of actions, it is important for the robot to verify if this
sequence is executable before it saves the sequence into memory. The approach used in this
project is to associate each procedure with a triplet S;A;S, with properties similar to
productions in SOAR (see [Laird et. al., 1987]). The state §; is the pre-condition for action A;.
It defines what conditions must be satisfied by the robot’s state for action A; to be possible.
The state S, is the final state, resulang from the action A; applied to the robot’s state. Fora
sequence of actons to be realisable, the final state of one action must be compatible with the
pre-condition of the next one. To enable this venfication, the robot must be able to “imagine”
the consequence of an action. For that purpose, a “predicton” function is associated with
each primitive action, and with each newly created procedure. This 1s described in more detail
in the following section. Figure 5-3 illustrates the use of the prediction function during

venfication of the consistency of the sequence of instructions from the user.

109

Any inconsistencies detected may mean that the user has made a mistake in his/her
description or the system misinterpreted what the user said. In this case a simple dialogue with

the user 1s started to clanfy the problem.

5.4 The “prediction” and “action” functions of primitive

procedures

Every primitive procedure and newly created procedure is composed by a “prediction” and an
“action” functions. Both these functions exist in the procedure’s module file and take the
same parameters with one exception: an extra parameter called “state” is passed only to the

prediction function. This state is modified and returned by the prediction funcuon.

As explained in the section 5.3 the prediction functon of a procedure is used to predict the
future state of the robot, given its current state, when the procedure is executed. Also the
prediction function can detect any inconsistencies berween the state of the robot and the
expected state, which is required for the successful execution of the procedute. During the
learning of new procedures, when an instruction given by the user is mapped to a procedure
in the knowledge pool of the system, the predicton function of that procedure is called with
the current “virtual” state of the robot in order to check whether this state satisfies the pre-
condition for the procedure to execute. If no inconsistencies arise, the new virtual state is
returned by the prediction function and the procedure call is added to the new procedure file.
This 1s repeated with the new instruction of the user until he /she finishes his/her description.
If there is an inconsistency, however, the prediction function returns an error message to the

robot manager indicatng the problem. In this case the system attempts to rectify the problem

111

in a simple way by responding to the user with: “I did not understand what you said”

expecting the user to repeat.

The prediction function of every primitive procedure makes three checks every ime 1t is

called:

1. Parameter combination check.

2. Parameter value check (for every parameter passed to the procedure).

3. State check.

The checks are made in the order presented above and if any inconsistency occurs along the
way, the prediction function returns without checking for any further inconsistencies. Table

5-2 shows the pseudo-code of the prediction function indicating the three checks.

112

prediction(state, parameter_ 1, parameter_2, .., parameter_n)

{

/// Parameter combination check /////////11117 1777717727711 10207007017
if passed parameters_list mot in valid_parameter_combinations

{

return parameter_combination_error
}

/// Parameter wvalue check ///////7177/7777177777F770707772010017°7077777
if parameter_] not in parameter_1_accepted_values

{

return [parameter_value_error, parameter_1]

}

if parameter_2 not in parameter_ 2_accepted_values
{

return [parameter_value_error, parameter_2]

}

if parameter_k not in parameter_k_accepted_values

{

return [parameter_value_error, parameter_k]
}
/// 8tate check //// 7/ /1111177170000 E70 0107070700007 77087007777717
list_of_valid_states = [state_l, state_2, .., state_k]
if state not in list_of_valid_states

{

return [state_error, statel

}

return predicted_state

}

Table 5-2: Pseudo-code of the prediction function in primitive procedure modules.

The parameter combination check makes sure that the combination of parameters passed to

the pomidve is one of the allowed combinations (see Appendix A for the allowed parameter

113

combinations of each primitive procedure). Once the first check is passed, the second check
makes sure that the value of every parameter passed to the procedure is among the allowed
values for that parameter for the specific procedure (see Appendix A for the allowed
parameter values of each ptimitive procedutre). Finally, the state check verifies that the virtual
state of the robot (predicted by the previous procedure) is among the valid states compatible
with the action to follow. All pnmiave procedures have their own list of valid states. The state
of the robot must be the same as one of the members in this list in order for the state check to
be successful. For example, consider the case when a user says: “carry on to the end of the
street” and then he/she contnues by saying: “follow the road to...” In this case the state
check will fail because the current state value 1n the virtual state vanable will be

“end_of_road” after the execution of:

follow_road(relation_l=“to*, object_l="end_of_road”")

that corresponds to the first urterance of the user. This state value will not be among the valid
states after the execution of the above “follow_road” primidve call since the robot at the end

of the road (whether this is a dead-end or a t-junction) does not have a road ahead of it.

The action function in the procedure’s module is the one containing the commands which,
when executed, cause the robot to perform the action instructed by the user. The different
operatdons that take place in the action function of the primitive procedures are explained in

detail in chapter 6.

114

though, the appearance of such low-level procedures revealed 2 more important fact: it was
the level of specialisation of the human users within the context thar determined how
fundamental, to the robot, primitive procedures are. For example, if all human subjects invited
for the corpus collection were roboticists then the pdmitive procedures would probably refer

to more fundamental tasks such as those listed in Table 5-1.

The existence of tasks at different levels is mentoned in [Lueth et. al., 1994] where a dialogue
interface for a robort performing mechanical assembly tasks is explained. The main difference
with the work presented here is that 1n [Lueth et. al., 1994] all the tasks that the robot can
perform are accessible to the user via the natural language interface. This is to allow a more
elementary control of the robot. As with previous approaches descrbed in section 2.1 the
complete task vocabulary of the robot described 1s determined using a robot-centred

approach.

The use of a prediction function in primitive procedures (described in section 5.4) provides a
mechanism for the robot to prevent failure in the execution of a route description before the
execution starts and while it still has the attention of the user. Errors in the executon of a-

route description can occur because of four reasons:

1. When the user makes a mistake in the route descrption.

2. When the user is ambiguous.

3. When the user does not provide enough information for the execution of an
instructdon.

4. When the system wrongly recognizes what the user said.
116

It is important to realize that the prediction function will not always detect errors because of
the above reasons. This is because the outcome of the above cases can sometimes result in a

valid procedure call that will produce an action not intended by the user.

117

1. For robot localization.
2. To establish the location and onentation of objects mentoned in route descriptions.

3. To establish the location of the next waypoint that must be reached by the robot while

it is moving towards its final destination.

To achieve the above tasks several pre-processing operations are petformed on the raw

camera image first. These are descobed in section 6.1.

Landmarks referred to in route descriptions are categorized in two groups for the purposes of

this project:

1. Road layout features (such as turmnings, crossroads, t~junctions etc) and

2. Non road-layout objects (such as trees, buildings, the bridge etc).

Section 6.2 explains how road layout features are found in the robot’s view using the well

known method of image template matching.

Although onginally planned, the duration of this project did not allow for the development of
image processing routines, which would recognize non road-layout objects mentioned in the
natural language route descriptions. Section 6.7 explains how non road-layout landmarks

mentoned in route descoptions are detected using a coloured marker placed next to them.

119

In order to be able to determine and account for the odometric error introduced every time
the robot moves (localization) and also to keep in memory important visual information
previously “seen” by the robot, which afterwards falls outside its field of view, a “short-lived”
map of the environment is created as the robot moves. The “short-lived” map 1s described in

section 6.3.

In sections 6.4 and 6.5 it is explained how road surface and the road edge information are
extracted from the robot’s view. Road surface information is used in the template matching

process and road edge information is used in the creaton of the “short-lived” map.

Finally section 6.8 describes how spatial references to landmarks are used for successful robot

navigation.

6.1 Capturing and pre-processing the robot camera

image

Two successive operations are performed on the raw camera image after it 1s captured by the

robot:

1. Optical calibration and

2. Inverse perspective mapping.

120

trial-and-error. This is done by changing the value of £, undl the corrected image displays the
calibration pattern undistorted. For the images captured by the camera in this project £, was

found to be 6.5E-6.

Inverse perspective mapping is applied to the optically calibrated camera image to produce a
top view (or “eagle’s eye view”) of the scene that the robot is facing. However, this 1s a
pseudo-view because it can only show true geometrical information of objects existing only on
one plane. For the purposes of this project, the road surface plane is chosen to be consistent

with the true top view of the scene. All three-dimensional objects appear distorted in this view

(Figure 6-3(b)).

122

This distortion occurs because the inverse petspective transform takes as input a two-
dimensional image (the camera image). Therefore only one plane (out of the infinite possible)
can be selected to be consistent with the real world. In this project the road plane is selected

for this purpose. The following equations descrbe the inverse perspective mapping function:

(yc —y)-\/Z-il—cosiaH

a
[, 'COS[EJ (6-2)

d =h-tan -7—2z:—o9+arctan

e=2"%c 2.2 +d? -tan(ﬁj
I 2

w

Where (4, ¢) are the world coordinates of a point represented by the camera image coordinates
(x, 3. Angle B1s the tilt angle of the camera, (, y) are the coordinates of the camera image

centre, &and f are, respectively, the camera’s vertical and horizontal maximum angles of view

and 4 is the distance between the camera and the ground plane.

Notice that the height and inclination of the robot camera are the two parameters that define
which plane (in the real world) will be geometrically consistent with the top view image after

the transform is appled.

Considenng the road surface plane, notice that pixels in the lower part of the camera image
correspond to visual information in the plane closer to the robot. Likewise, pixels at the top
part of the camera image correspond to visual information further away from the robot
(Figure 6-4).

124

This is because the sampling at the bottom of the top-view image is less severe than at the top

and therefore any interpolations at the bottom of the image are likely to be more accurate.

Using the whole of Figure 6-3(c) would take a lot of computational time to perform future
image processing. Furthermore, the robot does not require visual data as far as Figure 6-3(c)
extends since it will not be able to move that far in one go because of its accumulating
odometric error. Therefore a smaller section of Figure 6-3(c) is used for the purposes of
further image processing. This has dimensions 100x100 pixels and it is the lowest part of
Figure 6-3(c). This is shown in Figure 6-3(d). The scale of this is 0.003330m/pixel. This means
that the robot uses only visual informaton consistent with its plane of motion and its useful
view extends as far as 0.333m away from its position. From this point onwards this image

matrix will be referred to as the “top view image”.

The two pre-processing steps described above (i.e. optical calibration and inverse perspective
transform) are always performed on every new image captured by the robot. In order to save
computational ime equations 6-1 and 6-2 are used to produce a “transformation lookup
matrix”. This matrix is of the same size as the top view image and contains in each element
the coordinates of the pixel in the raw image that needs to be copied to the corresponding

location in the top view image to achieve both pre-processing steps.

126

6.2 Detection of road features using image template

matching

In this section, the method for locatng road layout features mentioned in route descaptons is
described. Such features include left/right turnings, t-junctions, roundabout entries/ exits, road

ends, road bends and crossroads.

In order for the robot to navigate successfully to its destination, it needs precise location
information of any landmarks mentioned in the route description. In most cases the robot
must move to the landmark’s location and perform a manoeuvre. For example to “rurn left at
the crossroads” the robot needs to move to the centre of the crossroads and rotate left to face

the new directdon.

In the example given above the precise location of the crossroads is not explicitly given by the
user and therefore it has to be determined by the robot duning the execution of the road
instructon. To do this, the robot needs to first identify the road feature (the crossroz;ds) and
then select a point on the feature to navigate to (centre of the crossroads). Then it needs to

perform the requested action (rotare left).

To identify road layout fearures in this project a simple form of template matching is used.
Section 6.2.1 explains briefly what i1s template matching and refers to previous research in this
area. Section 6.2.2 presents the templates of the template matching method used in this thesis,

section 6.2.3 explains the template matching procedure and section 6.2.4 describes how the

127

template matching method is used in the primitive procedures to achieve successful robot

navigation.

6.2.1 Template matching

Template matching is a method that falls under the broader scope of image matching or image
registration. Image matching is a well researched filed spanning over the last forty years (see
[Rosenfeld, 1969], [Niblack, 1986], [Jain, 1989] and [Gonzales and Woods, 1992]). The aim of
image matching techniques 1s to obtain a measure of similarity (or difference) between two
images. One of the images (usually called the reference image) i1s geometrically transformed so
that each point in it can be mapped to a point in the other image. This transformation can
involve rotation, transltion and scaling of the reference image. For each such transformation
a similanty (or difference) value is calculated based on the properties of the overlapping

regions In the two images.

The method of calculation of the similanty (or difference) measure between the two images
depends on several factors such as the area of application of the image matching operation,
the available computing power, the required precision of the result, the available image

information etc.
A comprehensive review of image matching techniques and examples of the wide spectrum of

applicattons where the different approaches are used can be found in [Brown, 1992] and

[Aschwanden, 1992].

128

Template matching is one variaton of image matching. In template matching the reference
image (or template image) is an image of an object of interest, which is sought in the main
image. A sufficiently good match of the template 1n the main image reveals the presence (and
location) of the object represented by the template in the main image (see [Rosenfeld and Kak,

1982], [Pearson, 1991] and [Pratt, 1991]).

In this thesis template matching is used to locate road layout features in the robot’s view. The
templates used in this method are pre-constructed images of road layout features. These are

presented in the following section.

6.2.2 Road feature templates

The templates used 1n this thesis are binary images (indicating road and non-road regions) of
local road surface features drawn at the same scale as the short-lived map. Fifteen templates

are used by the primitive procedures. They are shown in Table 6-1.

129

This 15 essentially no different than computing the sum of the absolute (or square) of the
differences between overlapping pixels in the two images and normalising over the
ovetlapping area between the two images. The aim would then be to find a template position
that would give a minimum rather than a maximum score. This method is described in

[Rosenfeld, 1969].

Because template matching 1s a costly operation as far as computer processing time is
concerned different methods exist to locate the best template matching position in a more
efficient manner. In this thesis a simple “hill-climbing” method described in [Rosenfeld and
Kak, 1982] is used to speed up the matching process. The methed requires that the correlation
between the template and the map image contains relatively smooth and broad maxima. In
other words the matching quality berween neighbounng template transformanons 1n the
(x,3,@) space should vary in a relatively gradual manner. In order to find the best matching
position of the template, a crude search is performed initially using coarse steps of position
and rotation of the template on the map. The search is then refined for a more accurate
determination of the position and onentation of the best matching position. This is illustrated

in Figure 6-7.

135

For this reason, depending on the user’s instruction and therefore the parameters passed to a
primitive procedure, a landmark sought in the primitive may be represented by a set of
possible templates mnstead of just one. In the examples given above it is not clear whether
user’s u9 and u24 refer to a turning or a t-junction and therefore the target in the “turn”
primitive would involve finding a good matching position for either template (c) or template
(n) of Table 6-1. Each template would have its own associated actions, which would be

executed if the template succeeds.

When, after searching its view, the robot does not find the landmark it is looking for, it
follows the road it is on for a short distance before it searches again. Following the road is also
a task that involve§ template matching. For this purpose, the robot uses one of three

templates depending on its state, L.e. with reference to Table 6-1: if the robot is on a straight or
slightly curved road, template (a) is used, if the robot is in the roundabout in a clockwise
direction, template (j) is used and if the robot is in the roundabout going round in the ant-
clockwise direction, template (k) is used to follow the road. The template associated actions

with these templates are simply to:

1. Move to the waypoint mapped to from the template’s pivot point.

2. Turn to the new direction according to the template’s direction vector.

A video example showing the execution of the route instruction “take the second left” can be

found on the CD accompanying this thesis (see Appendix C). The example illustrates how

139

template matching takes place in real-time and also how localization and mapping (described

in the following section) occurs.

6.3 The use of a short-lived map

A short-lived map 1s 2 map of the immediate vicinity of the robot that is updated as the robot
moves 1n its environment. The map records previously seen visual information that goes out
of view as the robot moves. The dimensions of the map are 100 x 100 pixels (i.e. same size at
the top view image). The robot’s position on the map is always in the middle of the bottom
edge and facing the top of the map (i.e. same as in the top view image). As the robot moves,
the map 1s translated and rotated to maintain this frame of reference. In the process, elements

of the map that reach its edge will disappear, thus the term “short-lived™.

Two versions of the short-lived map are used, the first shows areas of the road surface and the
second shows the road edges. These versions are constructed using road surface and road
edge information filtered out from the top view. Details of how the road surface and road

edge images are obtained are given in section 6.4 and 6.5 respectvely.

The purpose of constructing a “short-lived” map is twofold:

1. To be able to determine the odometric errors of the robot and
2. To compensate for the “dead angles” of the robot. These are the areas close to the
robor that fall outside its field of view due to the position and inclination of the

camera (see Figure 6-10).

140

When appending new visual informaton to the map, only the road edge information is used.
This is because the road edge is geometrcally consistent between top view images (because it
1s on the road plane) but also because the road edge allows for better accuracy in the matching
of new information on previous informadon on the map. The positon where the new road
edge view matches best on the previous road edge view is used to append new road surface
information on the previously seen road surface data. The complete process of how this is

done 1s illustrated in Figure 6-12 and descrbed below.

143

Before the robot moves, image (a) is captured and from its top view (b) the road edge and
road surface information is extracted (images (c) and (d) respectively). Assuming this is the
first dme the robot is going to move, the map contains no information and therefore the road
edge and surface information is simply pasted on the respective edge and surface map versions
(images (e) and (f) respectively). After the robot moves a new camera image is captured (g)
and from it the top view is produced (h) from which the new road edge and surface
information is extracted (images (1) and () respectively). This time the map 1s translated by the
motion vector sent to the robot so as to reflect the estimated new position of the robot. This
produces image (k). The difference between this estimated position and the actual position of
the robot is the error vector r (shown in Figure 6-11). The new road edge information (1) is
then matched against the shifted road edge map (k). This matching process is explamned in
section 6.3.1. The position where the new road edge image (i) matches best on the road edge
map (k) in the example of Figure 6-12 is shown in image (I). Note that the brightness of the
two images is changed for clanty. The odometric error of the robot is equal to the
displacement and rotation of image (i) in order to match on image (k). This error vector is
then added to image (k) to produce the actual robot’s position in the road edge map (image
(m)). Finally, the road edge version of the map is translated and appended with the new road
surface information so as to reflect the actual position of the robot (image (j)) in the road

surface map.

145

1. The score, which 1s the matching road edge pixels in the intersecting area of the two
images divided by the number of road edge pixels in the map image and
2. The confidence factor, which is the fraction of the road edge image area falling onto

areas of the map contarning informaton.

This is formally expressed by the following equation:

> AND(m,n,) > NOR(ni,n,)

Q (x y 9) _ pEN(xy. M + PEN(x,y . @) M

2 [-
2., 2. (6-4)
PEN (x.y.@)NM PEN

m,m’,n,n’ € {0,1}

Where p is a pixel location in the overlapping area of the two images. m and n are values of

pixels in the road edge map image M and road edge image N respectively. Value 0 denotes no
road edge, and value 1 denotes road edge. Nfx,y,6) is the road edge image of the top view

translated by (x,) and rotated by €. #’and »’are the information masks of the map and road
edge images where 0 denotes the presence of information (mask is off) and 1 denotes no
information (mask is on). The best matching position and onentation of the road edge image
1s the one where (J, 1s maximum. Equation 6-4 ensures that, for two configurations with equal

score, the one with highest confidence has the best match quality.

To save computation time and limit the risk of matching the new top view at the wrong
location, the search is limited to a small window defined on the map around the expected

position of the robot. The range of rotation of the top view for each match position is limited

147

To produce Figure 6-14(b) from Figure 6-14(a) a simple colour filtering technique is used.

This 15 explained in the following section.

6.4.1 Colour filtering using the chromaticity vector

The colour of the road on the miniature model town is a uniform shade of grey. It does not
however appear uniform or consistent in the camera image, and subsequently in the top view

image, because of several reasons. These are:

1. Automatic white balance and aperture control of robot camera.

2. Casting of shadows from other objects.

3. Castng of colour shadows from objects and the robot.

4. Changing colour and intensity of natural sun light entering through the windows of
the lab during the day.

5. Changing light conditions in the lab.

The white balance and aperture control of robot camera are changed automancally by the
camera’s circuit depending on the compositon of the image. White balance is the method
used by the camera to calibrate the colour values of its output image. This 1s done using a
reference colour from the image and interpolating to find the other values. The problem anses

when the reference colour changes with the composition of the image.

149

Simple chromatcity filtering was then be used to discriminate the colour of the road.
Chromaticity is an intensity invanant description of colour. It is a two-dimensional vector /C,

C JJ denved from the RGB colour coordinates by the following equation:

C: .
C(R,G,B) = [c] = (6-5)

g

w| Q|

The chromaticity (or normalized RGB) colour space was used instead of the HSI (Hue,
Saturation, Intensity) space because of practcal difficulties. Grey colour (ie. R=G=B=X
where X is in the range [0, 255]) is represented in the HSI space by H=0, §=0 and /=X This
is confirmed by the following equations (taken from [Ballard and Brown, 1982]), which are

used to convert a colour representation from the RGB space to the HSI space:

. nos-{ (R-G)+(R-B)
2J(R-G) +(R-B)G-B)

3
=1—-——— (mi
S {min(R,G, B))

6-6)

I=%(R+G+B)

Although the colour of the road was grey, in practice, image noise and other reasons
mentoned at the beginning of this section, caused changes to the three channels of the RGB
representation so that the relationship R=G=B (for the road colour) was broken in the image

captured by the camera. It was therefore not possible to detect the existence of the road

131

colour using the criterion H=0, §=0 and /=X as hue was grater than 0 when the relationship

R=G=B was not true.

Filtering to produce Figure 6-14(b) from Figure 6-14(a) is done by setung to white
(RGB=[255, 255, 255]) all pixels on the top view image whose chromaticity falls within a

range of values about a mean value C,

ean”

These ate considered to be the road pixels. All other
pixels are considered to be non-road pixels and are changed to black RGB = [0, 0, 0]). C,,, is
a value that 1s initially set to [1.0, 1.0] (chromaticity of grey) but continuously changed, each
time a new road filtered image 1s produced, to the average chromadcity value of the road
pixels found in the image, thus bootstrapping it to any changes to the apparent colour of the
road. Figure 6-16 illustrates how bootstrapping takes place between two successive image

captures.

152

2. References that were used to inform the robot of a landmark’s location. For example:

“you got pc wotld on your nght” (u20_GB_EC).

The second case above is further resolved in two cases:

2a. The landmark mentioned 1s not the final destination. This type of reference 1s usually
used to assure the robot that it is following the correct road and

2b. The landmark mentioned 1s the final destination of the robot.

In all cases, the robot needs to locate the landmark referenced by the user. Locating a
landmark means establishing a road position, which will represent the landmark. This 1s
achieved as descnbed in secdons 6.2 and 6.3 depending on the type of landmark (road layout

feature or non road-layout feature).

In case 1, after locating the landmark, the robot needs to move in order to satsfy the relation
between itself and the landmark. The robot’s action to move is part of the target associated
actions in the prmitive procedure (see sections 5.1 and 6.2.4). In the example utterance:
“continue forwards undl you come to a juncdon”, once the juncton is found and its road

locaton is established the robot mowes to that location.

In case 2a the user only informs the robot of a landmark it will meet along the road as a
confirmaton that the robot is on the right track. No action is taken by the robot once the
landmark is found in this case. In fact, there is no problem in completely discarding such

references as users always use them to refer to landmarks along the road that the robot 1s

162

following. An exception to such references is when the user refers to the destination landmark
(case 2b). In this case the robot uses the reference to move to the desunation landmark even
though there is no explicit instruction from the user to do so. For example in the corpus route
description ul_GA_MD the destination is Safeway (D) and therefore the final utterance:
“Safeways 1s the next building on your right hand side” is actually treated as the instruction:

“follow the road to Safeways which is the next building on your right hand side”.

In Table 6-3 all the words in the corpus indicating a relation between the robot and a
landmark are listed along with examples of their occurrence. An explanation of the acton of
the robot once the landmark 1s found is also given. Note that this action is only performed

when the reference falls in categores 1 and 2b above.

163

Relational

Example form the corpus

Robot’s action

expression
aACTOSS “across the bridge” The robot moves on the
“across the crossroads” landmark’s road location.
after “after you pass the university” The robot moves on the
“take a left hand turn after the post office” landmark’s road location.
“tescos a short way along that road” The robot moves on the
along “you will find the hospital a short way along landmark's road location.
that road”
at “exit the roundabout at the third exit” The robot moves on the
‘you arrive at the car park” landmark's road location.
“betore reaching the university main door take the | No action from the robot once
before rpad to your right” . the landmark is found.
“just before the post office on the left hand
side turn left”
onto “across .the crossroads onto a roundabout” The robot moves on the
“go straight onto the roundabout” landmark'’s road location.
“again turn left over the bridge” The robot moves on the
over “come to another junction if you go straight over landmark’s road location.
that”
“past the university of Plymouth” The robot moves on the
past " " . .
past pc world landmark’s road location.
to “come to a junction” The robot moves on the
“follow on to the roundabout” landmark'’s road location.
towards “you Il need to go forward towards the The robot moves on the
roundabout” landmark's road lecation.
unti “forwards er until you come to tescos” The robot moves on the
“continue forwards until you come to a junction” landmark's road location.
in front of “it should be right in front of you” The robot moves on tl_fle
“in front of you is er a crossroads” landmark'’s road location.
. “the car park is directly opposite” The robot moves on the
opposite . .
landmark'’s road location.
left of “the post office is directly on your left hand side” The robot moves on the
“and then you reach boots which is on your left” landmark'’s road location.
right of “pass a park on your right” The robot moves on the

“safeways should be on your right

landmark's road location.

Table 6-3: Words in the corpus that indicate a relation between the robot and a landmark

along with an explanation of the robot’s final location with respect to the landmark’s

location.

2 <

Note that when the user instructs the robot to move “after”,

past”, “over” or “across” a

landmark the robot actually stops on the landmark’s road location and not past it as suggested.

This 1s because there is no information as to how far past the landmark it should move before

1t stops.

164

6.9 Summary/Contributions

This chapter described how image template matching is used 1n the robot’s primitive
procedures in order to detect road layout features mentioned in route descrpuons. The
interesting feature of the method proposed here lies not in the image processing technique
itself (as template matching 1s a well rescarched area) but in the fact that it 1s driven by the
content of natural language instructions. The templates used in each search operation are
derived from the natural language instruction given by the user. Furthermore, the method
proposed here follows a user-centred approach in that the template images shown in Table
6-1 were created solely by studying the collected corpus of route instructions and the

environment that these referred to.

A simplified method of “image mosaicing” is also described in this chapter in order to create a
“short-lived” map of the robot’s immediate locality. The odometric error of the robot can be
determined as a result of appending new visual mformation on the map every time the robot
moves to a new position. The odometric error is used to re-localize the robot after dead
reckoning is used to estimate its position and thus re-localize the position, with reference to
the robot, of any significant landmarks stored in the robot’s memory. Apart from re-localizing

the robot the “short-lived” map is used to compensate for the “dead-angles” of the robot.

As mentioned in section 2.4 there is an error produced in the image-sequence mosaicing
process due to image noise. This problem creates a particular challenge in cases were
continuous incremental mapping of cyclic environments is required because 1t increases with

the number of images in the sequence and therefore with the distance travelled by the robot.

166

The map created as the robot moves in this project only displays visual information 1n the last
2 images captured by the robot. For this reason the error due to linking the two images 1s
present only once in the map. As mentoned in [Unnikrishnan and Kelly, 2002a] the maximum
value of this etror is equal to the world distance represented by 1 pixel in the map image. In
this project the maximum error is 3.33mm. This value is small when compared with the size of

landmarks in the miniature town and can be safely neglected.

167

Chapter 7

7 The evaluation of the primitive

procedures

The IBL system is compmsed of several functional units. Errors can occur at different stages
from the ume the user speaks to the time the robot starts to follow the route instructions.

These errors fall into four main categories:

1. Speech recognition errors (caused by the Dialogue Manager).

2. Grammancal and syntactical analysis errors (caused by the Dialogue Manager).

3. Errors in the translation from the DRS (Discourse Representation Structure) to
primitive procedures or previously leamed procedures (caused by the Robot Manager).

4. Errors during the execution of the route mstructions (caused by the pamiave

procedures).

This chapter is concerned with the last type of errors, in the list above, which are related to

the work presented in this thesis.

168

To determine the performance of the individual components and eventually the complete IBL
system when faced with new route instructions, the collected corpus was split in two equal
sets. One to be used for the development of the system (development set) and the other for
its evaluation (evaluation set). Appendix B lists the route descriptions in each of the two sets.

In this chapter, the method for evaluating the primitve procedures is descabed.

To develop and test the prmitive procedures two steps were followed:

1. Finalizaton of the specifications of the primitive procedures using the development
set of the corpus.
2. Testing of the performance of the primitve procedures with the evaluation set of the

cotpus without changing their specifications.

As mentioned eatlier in section 4.3.1, after the collecdon of the corpus and the imitial
specification of the primitive procedures, each route descaoption collected was manually

translated into its primitve procedure calls. An example of one such translation is given in

Table 4-5.

For the purpose of developing and evaluating the primitive procedures, it was assumed that
for every route description the robot would have no prior knowledge, 1.e. the robot’s
knowledge pool would only contain the primitive procedures. As mentoned in section 4.1,
during the corpus collection procedure each subject gave six route descnptions and was
encouraged to refer to previously explained routes if he/she wanted. Any references to

previously explained routes by the users were discarded dunng the development and

169

evaluaton phases and the robot was placed at a point where the route description was explicit.
An example of such a case is the route description in Table 4-5(a) and illustrated in Figure 4-3.
Figure 4-3 shows that the user assumed that the robot knew the way to the roundabout
because he/she explained this in an earlier route description. During the primitive procedure
tesung of route descrption u7_GC_CX the robot was placed in front of the roundabout

(where the solid red line begins in Figure 4-3) and the translation in Table 4-5(b) was executed.

The aim during the development step of the pnomitive procedures was to execute each
manually translated route descnption in the development set until the robot performed
successfully in all cases. The success of the robot was considered as per primitive procedure
call and not per successful route (whether the robot did or didn’t reach the destinadon)
although both results are presented here (sections 7.1 and 7.2). This is because route

descriptions could be unsuccessful because of wrong or ambiguous route instructions given by

subjects. This 1s further discussed in section 7.1.

For the testing phase each translated route descrption in the corpus evaluation set was
executed. During this phase no changes were made to the specifications of the primitive
procedures. Success results were recorded at route description level and at the primitive
procedure level. These are presented, along with a description of their significance i the

evaluation process, in sectons 7.1 and 7.2 respectively.

Video sequences showing the robot executing two route descriptions (ul13_GA_CL and
ul9_GB_EGQG) in the evaluaton set can be found on the CD accompanying this thesis (see

Appendix C).
170

7.1 Results per route instruction

A route description was considered to be successful if, after the execution of the associated
manual translation file, the robot reached its destination. During the development and testing
of the pomitive procedures, the robot could fail to reach its destination because of one of two

reasons.

1. Either due to a pnmitive procedure fai]ing or

2. Due to a wrong or ambiguous route description given by the subject.

Durnng the development phase of the pﬁrnitive procedures, route failures due to the primitive
procedures were cause for modifying the programs of the primitive procedures. However, any
failures due to wrong or ambiguous descriptions could not be corrected and were executed
until the point where the user’s mistake or ambiguity occurred. During the evaluation phase
no modifications were made to the primitive procedures. Any route failures either due to the
primitive procedures or the descriptions of the users were simply recorded. The errors that

occurred during this phase are described in section 7.1.2.

Table 7-1 presents the route success results for the development and evaluation sets when

each route was executed from the manual translation files.

171

Because this value is not among the allowed values “object_1" can take in the specific

primitive, the procedure returns a “parameter value error’” when called.

In the second case (Table 7-4(b)), the user asked the robot to “bear round to the left” at the y-
juncdon. In this case no primitive procedure exists to accommodate this action because it 1s

first met in the evaluation ser.

Finding new or unmet primitive procedures in the evaluaton set was expected after the
functonal analysis of the corpus (desctibed in section 4.3.1). The graph of Figure 4-4 shows
that on average two new primitive procedures appear between 72 descriptions (size of

development set) and 144 descriptions.

In two occasions the robot fails to reach its destination because of primitive failure (Table
7-3). In the first case (illustrated in Table 7-5(a)) the subject asks the robot 1n succession to
pass two landmarks, which are opposite each other: “go past derrys and the grand hotel”. The
“follow_road” primitive procedure, which is called twice, fails to find the “grand hotel”
because once it is at “derrys” the “grand hotel” is not in the visual field of the robot as seen by

the illustration in Table 7-5(a).

176

translated to a prmutive call without any consideration to any previous mention of crossroads

and thus it is assumed that the user refers to a third crossroads after the “exit on the left”.

In Table 7-6(b) the instruction after the robot reaches the crossroads is to “rurn left”.
Although the user meant “turn left (at the crossroads)” this is treated as “turn left (after the
crossroads)” because “move forward to crossroads” and “turn left” qualify as two
independent functional segments. During execution the robot passes the crossroads and then

starts looking for a left turning.

Finally the robot fails to reach the destination 1n 17 occasions because of wrong route
descriptions (Table 7-4). These are cases where the user was clearly mistaken in at least one of
his/her mnstructions while explaining the route to the destinatdon. Two such examples are

presented in Table 7-7.

179

7.2 Results per primitive procedure call

The results presented in 7.1 are more important in the evaluation process of the complete IBL
system since they provide the success rate of the primitive procedures as they appear in route

descriptions.

This section shows how successful was the robot in the development and evaluation sets in
the execution of the individual primitive calls of each route description. These results were
more useful in the development and evaluation of the primitive procedures at an atomic level,
Le. given the right initial conditions (robot state and correct primitive call initialisanion)
whether the primitive procedure would execute correctly. These results do not take into
account the human error and therefore primitive procedure calls, which occur at or after a
user’s error or ambiguity in the route description, were not executed. Table 7-8 presents these

results for the development and evaluation sets.

Development set Evaluation set
Total primitive calls 336 344
Executed primitive calls 227 218
Successful 224 (98.7%) 214 (98.2%)
Unsuccessful 3 (1.3%) 2 (0.9%)
New primitive procedures or
primitive parameter - 2 (0.9%)
combinations

Table 7-8: Primitive call success results during the development and evaluation of the
primitive procedures. Note that the percentage values indicate the proportions of the

executed primitive calls and not the total primitive calls.

During the development phase of the primitive procedures out of the 336 primitive calls in
the development set translation files, 227 were executed. These primitive calls were

continuously executed (as part of their route descriptions) while the primitive procedures were

181

During the evaluation phase out of a total of 344 primitive calls in the associated transladon
files 218 were actually evaluated. Out of these 214 performed successfully. The 4 cases were

prmiave calls failed are explained in section 7.1 and illustrated in Table 7-4 and Table 7-5.

7.3 Discussion

In 7% (5 out of 71) of route descrdptions in the evaluation set the robot failed because one or
more of the instructions in these route descriptions were classed as “ambiguous”. As
mentoned in section 7.1.2 this characterization 1s based on the critenia on which the
translation from natural language route descriptions into primitive procedure calls was made.
The translation was done by hand and in doing so the performance of the dialogue manager
and robot manager 1n dealing with such ambiguous cases 1n the corpus was considered. One

such route description (mentioned in section 7.1.2) is u7_GC_CX:

“from the roundabout take the first exit on the left continue straight over the

crossroads continue over the bridge erm continue straight over the second crossroads

the post office should be on your right” (u7_GC_CX).

The ambiguity arises when the user refers to a “second crossroads” when actually it is the first
crosstoads from where the robot will be when executing the instruction: “continue straight
over the second crossroads”. The user refers to this ordering to stress that there are two
crossroads in succession along the road. The system fails to recognise this because each

instruction in the route description is treated independently from what was said pror to 1t

183

Humans do not find situations like this ambiguous because they can resolve such references
by comparing them to what was said eatlier in the route descrption. Similar behaviour can be
simulated by the robot by analysing the route description given by the user before executing it
in order to detect and resolve such references. Alternatively the system can ask the user what

2>

he/she meant by asking him a question in the form of: “Did you mean ... or ...”".

A more detailed observation of Table 7-4 shows that the human robot-drivers were more able
to correct ambiguities rather than mistakes in the descriptions of the instructors in the corpus.
Also in the cases where a new primitive procedure or the wrong execution of a pmitve
causes the robot to fail the human subjects succeed. Note that in one case where the robot
fails due to a wrong execution of a priminve procedure the human subject fails (by
coincidence) because he/she omitted to record on paper important information when he/she

was listening to the route description.

Human subjects failed to reach the destination in 12 route descnptions (Table 7-3) but only 10
of those (Table 7-4) are the same as the routes in which the robot failed. This means that in
two cases human subjects failed when the robot succeeded. In both these cases the human

robot-dnver failed because of wrongly following the instructions in the route descoption.

The evaluation of primitive procedures on an individual primitive procedure call basis (section
7.2) shows that the code developed for the primitive procedures is successful in almost all
cases. Less than 1% of primitive calls failed because the user requested a primitive action,
which was not known by the system. This was expected since the graph in Figure 4-4

predicted that the system will be faced by approximately one new primitive in every 35 route

184

descriptions (slope of curve representing the complete corpus at 72 route descnptions). The
issue of new prmitive procedures ansing after the system is completed is discussed in Chapter .

8.

Table 7-8 shows that less than 2% of primitive procedures fail because the robot tdes to find
landmarks already past its field of view. The possibility of using a pan/tilt camera or
simultaneous searching for more than one landmark at any one time while the robot follows

the road, are two methods that could solve this problem.

Figure 7-1 summanzes the observations made in this chapter.

185

realize and repair mustakes of the speakers and of their own “on the fly”. Even though they
can make mistakes (e,;,) in following the correct road sometimes their success owing to the

ability to repair far exceeds that of the robot, which lacks this ability.

Therefore, the robot can increase the chances of succeeding in the execution of a route
description 1f it uses repair during execunon ime. Repair and the ability of the robor to 1unate
dialogue with its users during the learning of new routes in order to resolve possible mistakes

or ambiguities in the route descrptions are discussed as part of future work in Chapter 8.

187

Chapter 8

8 Conclusions and future work

8.1 Conclusions

This PhD thesis presented the work done as part of a project in Instruction Based Learning
for mobile robots. The aim of this work was to determine and implement the primitive
procedures that a natural language instructed robot following route descoptions would require

to have in its knowledge pool.

The main contribudon of this thesis to knowledge lies in the “user-centred” approach taken
for determining the functional vocabulary of the robot. The aim was to create a robot that
could be instructed by its human users withourt them needing to be previously trained on how
to do so. Previous work in the field of instructable robots required the users of the robots to
leam precise lexical and functional vocabularies with which to instruct the robots. These
vocabularies were predetermined by the creators of the robots thus following a “robot-
centred” approach. Although such approaches have succeeded in creating a faster and simpler
communication method between users and robots, in comparison with formal programming
methods, they nevertheless still constrained the users to a great level of formality and

precision. Furthermore, the amount of training that the users would tequire prior to using the

188

robot would ncrease in proporton to the amount and complexity of the tasks that the robot
would be required to perform. This of course would defy the purpose of creanng a natural

language instructed robot to be used by computer language naive users.

The aim of the Instruction Based Learning project was to create a robot that would be able to
accept instructions from its users as a human would. Such a robot would need to be able to
deal with the imprecision of the spoken natural language medium. Furthermore, such a robot
would need to be able to accept variations in spoken instructions that would result in similar

actions thus being able to deal with the versatility of natural language.

In order to determine the nature of spoken natural language route instructions following a
“user-centred” approach a corpus of route instructions was collected in the beginning of the
project from 24 different human subjects. The subjects were asked to give route instrucdons
to the robot as they would to a fellow human ensuring, in this way, that the instructors would
prodﬁce unconstrained natural language utterances. The implementation of the Instruction

Based Learning system was solely based on the results of the analysis of the corpus collected.

The study of the corpus natural language mstructions exposed three main problems that are

important for the design of Instruction Based Learning robots. These are:

1. The under-specification of natural language, which is a known problem.
2. The probability of new primitve funcuons arising in route instructions after the
development of the system. This is known for words but it has been seen here to

appear for primitive functions.

189

3. The cases when users make partial use of previously learned procedures when

explaining new procedures. This problem has never been documented previously.

This thesis focused on the natural language under-specification problem. Cases 2 and 3 above

are discussed n section 8.2 as part of future work.

Two methods are proposed in this thesis for determining the missing information in natural
language route instructions. This information 1s vital for the robot in order to be able to
execute the route instructions successfully. The methods proposed can determine the missing

information dunng the learning of new procedures and during their execution.

Dunng learning ume the missing informaton is determined by imitating the commonsense
approach of human listeners in order to achieve the same purpose. What human instructors
consider as commonsense and therefore omit 1n their spoken route instructons is determined
by studying examples of such occurrences in the corpus collected in this project. Necessary
parameters in primitive procedures are then allowed to take default values whenever these

values are not explicitly provided in the natural language instructions.

During the execution of primitve procedures missing information, such as the precise
location and orientation of landmarks mentioned in the route instructions, is determined using
the method of image template matching. In this thesis the method focuses on the
determination of the location of road-layout features, which are mentioned in route

instructions. The significant contributon in this method lLes in the fact that it is drven by the

190

natural Janguage instructions both in the design of the templates used and in their selection

during the execution of a primitive procedure.

The primitive procedures developed during the work presented in this thesis were evaluated
both on an individual priminve procedure call basis and also as part of route instructions. The
evaluation of individual primitive procedute calls showed very good results (more than 98%
success). This shows that the natural language under-specification problem can be solved with

the methods proposed 1 this thesis.

A novel method was followed in order to test the primitive procedures as part of complete
route descrptions. Durng this method, human subjects were invited to drive the robot
following route descoptions while being provided with the same visual information as the
robot. Their performance was later analysed and compared with the robot’s performance after
executing the same route descriptions. This evaluation method allowed a direct comparison
between the human listener and the robot as far as the execution of route descrptions. The
results of this compadson provided an important difference between the humans and the
robot in this context: humans can repair errors {made by the instructor or themselves) during
the execution of route descriptions by using past expetience and reasoning. This is an
important issue that will need to be taken into consideration in the future in order to improve
the performance of the current system. Some ideas on possible future work on this matter are

presented in the following section.

A software controller is proposed in this thesis in order to reliably and accurately control the

wheel speeds of the robot used in this project. The controller described comprises of one PI

191

(Proporuonal and Integral) speed controller for each wheel of the robot and a PID
(Proportnonal, Integral and Differential) controller to control the differental speed of both
wheels during each robot manoeuvre. The design and implementation of this software control
scheme provided an alternative to an expensive and more time-consuming hardware soluton

in order to achieve the same purpose.

8.2 Future work

During the evaluation of the primiave procedures, when the success of route descriptions was
considered, results showed that the robot managed to successfully navigate to its destination
in 63.4% of the cases. Less than 3% of these failures are due to primitive procedutes failing.

The remaining failures were due to the tollowing reasons:

1. Errors in route descriptions.
2. Ambiguities in route descriptions.
3. Failures due to the users requesting primitive actions, which did not exist in the

robot’s knowledge base (see point 2 in previous section).

In order to improve the performance of the robot, future work 1n instruction based learning
needs to be focused on the ability of the robot to start a dialogue with the user during the
learning of a new procedure in order to resolve ambiguities ot mistakes in the user’s
instructions. Initianing a dialogue with the user is a complex task because a question to the user
needs to be formulated properly by the system 1n order to address the problem and at the

same time the system should be able to handle the response from the user.

192

A mistake in a user’s instructton can only be detected by the robot if it causes an error in the
primitive call or if the instruction cannot be executed because of an incompatibility between
the previous or the next instruction. In these cases the error will be detected by the prediction
function of the primitive procedure corresponding to the action suggested by the user. A
possible solution could be to formulate questions for each possible error that the prediction

functon can return in order to prompt the user to rectify his/her mistake.

Ambiguities in the user’s instructions can be detected by studying the corpus for cases of
similar instructions with multiple meanings. In such cases the user can be given a choice
between the different meanings in the form of a question. Two examples of ambiguous

nstructions met in this project are:

1. When users order landmarks 1n succession to previously mentioned landmarks of the
same type for example: “go to the crossroads, ..., at the second crossroads...” when it
1s ambiguous whether the last crossroads is the second or the third from the beginning
of the example and

2, When users say, for example: “go to the post-office” when it is ambiguous whether
the post-office is on the road ahead or whether they assume that the robot knows the

route to the post-office.

Both cases can be resolved by giving a choice to the user in the form of a quesaon: “Did you

mean ... ot ...?",

193

It was found in Chapter 4 that the robot’s task vocabulary can never be complete in practice.
New primitive procedures are likely to appear in the user’s route instructions after the
completion of the system regardless of the size of the corpus used to develop the systern.
When a user instructs a new primitive action there are two possibilities for the speech

recognition system:

1. The system will misrecognize the command for another action.

2. The system will reject the command because of low speech recognition confidence.

In the first case, it is not possible for the system to realize that an error has taken place and
this will most likely result in the execution of the wrong action by the robot. In the second
case the system can ask the user a question such as: “did you mean ... oris this a néw action?”
an answer to which can cause the system start learning the new action. However, this only
solves half the problem of the new primitive procedures because in order to describe a
primitive action the user will need to refer to low-level robot procedures that are not
accessible to him via natural language (see section 5.2). Therefore, the problem of new
procedures appearing after the IBL system 1s completed 1s a challenging one to which a

solution 1s still being discussed.

Also in Chapter 4 it was found that some users referred partially to previously learned routes

when explaining new routes. One such example is:

195

“okay you ll need to pass thé train station again as you did going to the post office and

you ll see the university as you go onto the roundabout” (u4_GC_EW)

Were the previously explained route was from the Grand Hotel to the post-office and the new

route, being explained, is from the Grand Hotel to the university. Two possible solutions to

the partial re-use of previously learned routes were discussed during this project. These ate:

1o

To solve the problem during the learning of the new route by requesting an explicit
route description from the user for the part of the route he/she is referring to. In the
example above the system could respond to the user by saying: “Please explain the
route to the roundabout.”

To solve the problem during execution time by starting the executon of the previously
learned route and at the same time searching for the landmark mentioned by the user
where the diversion/termination is to occur (i.e. using concurrent processing). When
the diversion/termination point 1s found, executon of the recalled route should be
terminated. In the example given above the system will start executing the known
route from the Grand Hotel to the post-office while concurrently searching for the
roundabout. When the roundabout 1s found execution of the known route is

terminated.

The first solution suggested solves the problem at the expense of the user since he/she would

have to re-explain part of a previously described route. Implementation of the second solution

is transparent to the user but may require significant changes in the structure of the prmitive

procedures in order to be able to achieve the concumency described above.

196

8.3 Final statement

One of the most important aspects in the creation of human helper robots, which will be
useful 1n environments other than just the industral floor and which can be used by people
not necessarily possessing any programming or engineering knowledge, is their ability to
communicate with humans. This issue is as important as the functionality of the robot since a

robot that can do a complex task is not useful if its user cannot instruct it to do so!

Humans prefer the medium of spoken natural language more than any other (wnting,
signalling etc) 1n order to convey informaton to their fellow humans. This is because speech is
more efficient, fast and requires less effort. It is therefore likely that tn the future humans will

instruct their robots using spoken natural language.

When 1t comes to a robot, understanding spoken natural language is complex task. This is
because spoken natural language has no formal structure and it appears to be incomplete and
ambiguous. A human speaker assumes that the human listener will be able to resolve this
complexity using “‘commonsense”. Furthermore, the listener is expected to be able to engage
in a dialogue with the speaker in order to resolve any remaining ambiguities. These are issues

that need to be addressed in the case of a robot listener.

In this thesis a “usez-centred” method is proposed for creating the primitive procedures of a
robot following route descriptions. It has been shown how the under-specification problem of

natural language route instructions can be solved.

197

It is hoped that the wotk presented here can provide a start towards solving the grater

problem of unconstrained natural language dialogue between humans and their helper robots.

198

Appendices

Appendix A

In this appendix the specifications of each primiaive procedure are presented in separate

pages.

199

